ACIS FI Cosmic Ray Induced Dead Area

Yousaf Butt \& Brad Spitzbart, DOSS

Calibration Workshop, October

OUTLINE

Vaild celestial X-ray events landing in or on borders of CR 'blooms' are either undetected or assigned bad (eg. $\mathrm{g}=255$) and rejected on board or on ground.

Effect much more (factor ~10) important for Fls than Bis

Conventions: 'Instrumental' dead-area vs. 'effective grade-dependent' dead-area

Effect depends on the flight grade of incoming event

Effect also depends on exact PHAs even below split thres. in the nominally inactive border pixels as these low PHAs can conspire with charge present on the chip - even if that too is below split thres. - to make a bad output grade

Effect backgd CR rate dependent

Effect frame-time dependent

DATASET

‘CUCKOO’ data mode devised by P. Ford (MIT):
16 (+4 overclock) col's $\square 1024$ rows, RAW mode, consecutive 3.2 sec frames
Data analysed here between November 2000 \& May 2002 (94 Obsids) - all on I except 2 Obsids on SO; 4 on IO; 3 on I1. (Included some cuckoo-squeegy runs

比：䀳
四

囲

囲＂囲＂囲＂${ }^{\circ}$ 国囲－四囲－囲：

INSTRUMENTAL DEAD-AREA

PHA thresh.	cnt. thresh.	mean dead area	σ	Notes
13 ADU	3-in-a-row	2.45%	0.15 $\%$	
13 ADU	3-in-a-row	2.49%	0.14 $\%$	non-squeegy only
20 ADU	3-in-a-row	1.87%	0.12 $\%$	
20 ADU	3-in-a-row	1.91%	0.11 $\%$	non-squeegy only
13 ADU	3-in-a-col	2.51%	0.15 $\%$	counting col direction

20 ADU	3 -in-a-col	1.92%	0.12 $\%$	counting col direction

GRADE-DEPENDENT EFFECTIVE DEAD-AREA

Grade branching ratios from CTI evt mode data - grades $24,66,107,214,255$ are rejected on board

Summary Table

Flight Grade	Inactive Border PHAs	mean dead area	σ	Grade Branching Ratio
0	0	3.68%	0.21%	48%
$\mathbf{0}$	-6	5.73%	0.36%	-48%
θ	-12	68%	2.9%	-48%
z	-6	5.53%	0.35%	-8%
8	0	3.57%	0.21%	5%
8	-6	5.54%	0.35%	-5%
16	-6	5.54%	0.35%	-5%
$z 2$	-6	5.83%	0.37%	-2%
64	6	5.53%	0.35%	10%
104	-6	5.82%	0.37%	-2%
208	-6	5.83%	0.37%	-2%

The dead area as computed for the various flight grades

Distribution of border pixel PHAs from

Dead Area Variation w/ Backgd CR Rate
$10 / 22 / 01-04 / 29 / 02$ grade-sensitive thresh $=7$

ACIS Grades		ASCA Grade
0	0	Description
64656869	2	Single pixel events
234130162	2	Vertical Split Up
16174849	4	Vertical Split Down
812136140	3	Horizontal Split Right
7276104108	6	"L" \& Quad, upper left
1011138139	6	"L" \& Quad, down left
18225054	6	"L" \& Quad, down right
8081208209	6	"L" \& Quad, up right
14532128	1	Diagonal Split
333637129	1	
132133160161	1	
164165	1	
3692040	5	"L"-shaped split with corners
961441921321	5	
3538445253	5	
97100101131	5	
134137141145	5	
163166168172	5	
176177193196	5	
197	5	
24	7	3-pixel horizontal split
66	7	3-pixel vertical split
255	7	All pixels
All other grades	7	

Implementation Issues
-how different are point-like vs. diffuse srcs? Pile-up?
-border pixel distributions: derived or assumed?
-more raw mode/cuckoo runs?

