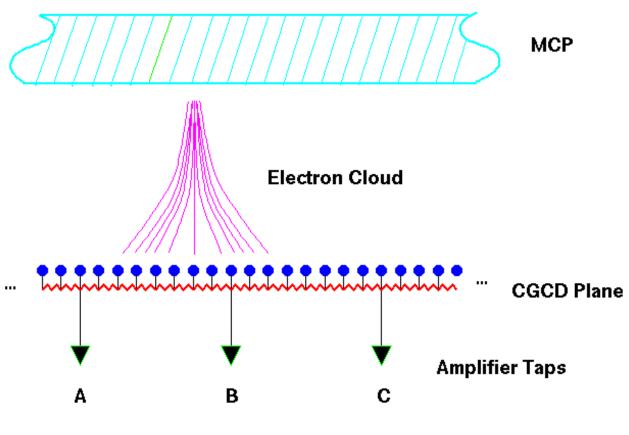

Studies of the Point-Spread Function of the Chandra High Resolution Camera

Michael Juda Margarita Karovska

- Overview of HRC event positions
- Non-ideal performance issues
- Fits with ray-trace-PSF kernel
- Deconvolutions
- Areas for future work

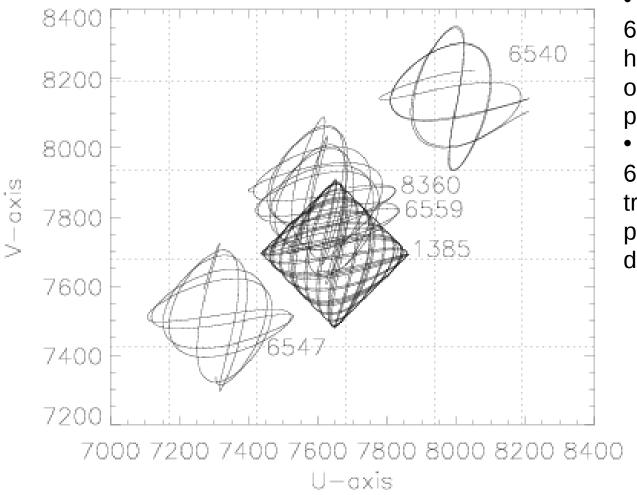

- HRC uses MCPs to convert X-ray to charge
 - Channel size/pitch determines ultimate possible resolution
 - 10/12.5 microns HRC-I
 - 12.5/15 microns HRC-S
 - Subsequent processing by 2nd MCP and read-out likely to add "blur"
- Charge-cloud from back of the MCPs "imaged" on crossed-grid
 - Charge-cloud centroid determined per axis with "three-tap" algorithm
 - Centroid position must be adjusted due to "gaps" from incomplete charge collection
 - Each axis may have its own resolution
- Laboratory measurement on "flight-like" system had FWHM of 20-25 microns

Three-Tap Fine Position Algorithm

HRC Fine Position Algorithm

$$fp = \frac{C - A}{A + B + C}$$

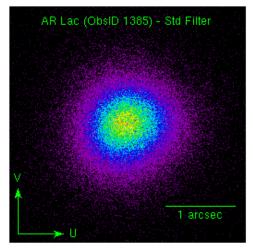
Fine Position

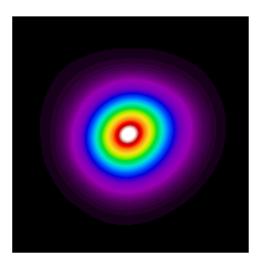


- "Gaps" due to centroid algorithm
 - De-gap correction applied to shift positions to close the gap
- Electronic ringing in amplifier strings for a subset of events
 - If not corrected produces "jets"
 - Affected events can be identified
 - Partial signal correction made (1 of 3 signals per axis)
 - De-gap correction attempts to fix impact of residual distortions
- Non-matching gains/offsets in amplifier strings
 - Not observed at component level
 - De-gap correction attempts to fix the induced distortions
- Impact may differ on each axis

- Perform 2-D Gaussian fits to on-axis source as a characterization of detector PSF
 - Ray-trace results used as kernel in sherpa
 - Results from several ray-traces at pointing offsets that followed the observation dither were combined to produce kernel
- Fit images generated from events with standard filtering and with additional filtering
 - Additional filtering rejected events with AMP_SF = 3
 as these can be affected by amplifier ringing
- Allow for elliptical shape in detector PSF
 - Axes can have differing resolutions
 - Axes can have differing non-ideal artifacts
- Fit a few on-axis observations around the nominal aimpoint

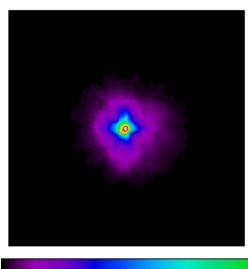
Source Locations on Detector

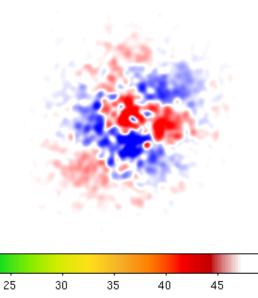




ObsIDS 1385,
6559, & 8360
have nominal observing parameters
ObsIDs 6540 &
6547 use SIM translation to probe different detector region

2-D Gaussian Fits




UL: Observation

LL: Ray-trace kernel

UR: Model

LR: Smoothed Residuals

Fit Results:

- FWHM = 4.81+/-0.02 pixels = 0.633+/-0.003 arcsec
- Ellipticity = 0.209+/-0.006
- Theta = 31+/-1 degrees

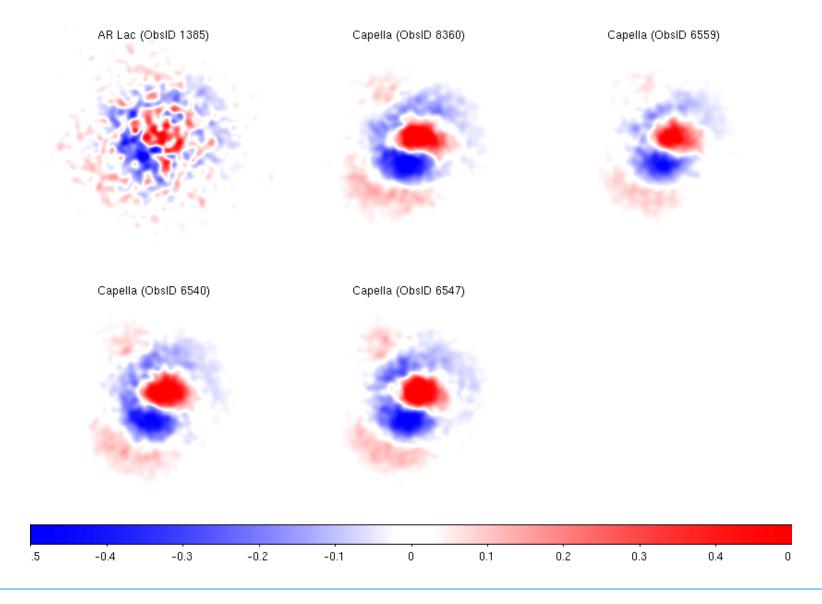
15

20

10

Events with Standard Filtering

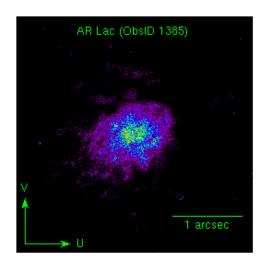
ObsID	FHWM (pixels)	Ellipticity	Theta (Degrees)
1385	4.808 -0.024/+0.019	0.209 -0.006/+0.005	30.2 -0.8/+0.9
8360	4.684 -0.024/+0.025	0.115 -0.006/+0.007	69.1 -1.9/+1.5
6559	4.833 -0.021/+0.038	0.149 -0.008/+0.007	66.6 -1.4/+1.8
6540	5.241 -0.025/+0.024	0.197 -0.005/+0.005	77.4 -0.9/+0.9
6547	4.912 -0.026/+0.024	0.179 -0.006/+0.006	80.9 -1.2/+0.9

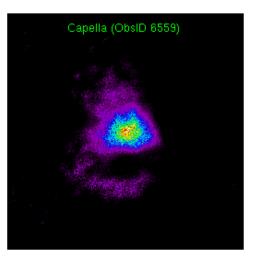

Events with Standard Filtering & No AMP_SF=3

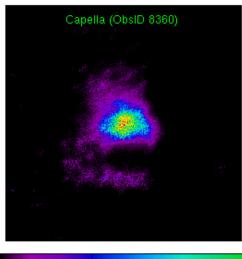
		i de la companya de	. —	.
	ObsID	FHWM (pixels)	Ellipticity	Theta (Degrees)
•	1385	4.776 -0.050/+0.047	0.202 -0.013/+0.013	23.8 -2.0/+2.1
	8360	4.535 -0.032/+0.023	0.109 -0.008/+0.007	69.5 -2.1/+2.1
	6559	4.548 -0.029/+0.029	0.140 -0.008/+0.008	74.4 -1.7/+1.7
	6540	5.070 -0.027/+0.031	0.194 -0.006/+0.007	80.1 -1.1/+1.1
	6547	4.820 -0.030/+0.029	0.173 -0.008/+0.007	81.9 -1.3/+1.3

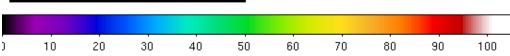
Added filtering reduces the fit FWHM

2-D Gaussian Fit - Systematic Residuals






- 2-D Gaussian fits have systematic residuals
 - 2-D Gaussian not a good model for the HRC-I PSF
 - Data more peaked than model
- Perform a Richardson-Lucy deconvolution of data with the raytrace kernel
 - 100 iterations
 - Goal is to show the "possible" artifacts and instrumental effects.


Deconvolutions

- Three observations at nominal aimpoint
- Tight central peak with halo
- "Bar" at -V appears in two Capella observations
 - ~1-2% the surface brightness of the peak
 - ~6 pixels (~38 μ m) from peak

- Understand origin of "bar" in deconvolved Capella images
 - Related to location on detector axis?
- Investigate improved HRC-I PSF model
 - Core + Halo
 - MCP responds to X-ray input with a "top-hat" PSF