Pileup and the ACIS/HRMA Point Spread Function

T. J. Gaetz, D. Jerius, D. Pease

2005 October 31

ACIS Operation (TE mode)

- ACIS is shutterless CCD detector.
 - frame exposed for τ_{frame} (typically $\sim 3 \text{ s}$); X-ray photons $\Rightarrow e^-$ charge clouds, $\#e^- \propto$ photon energy
 - frame xfr: transfer collected charge rapidly to frame store; parallel transfer rate $\equiv 40\mu$ s per parallel transfer.
 - $\circ~$ each pixel of column sees short exposure of all emission along the column \Rightarrow transfer streak or smear.
 - $\circ~$ transfer \ll dither; "instantaneous smeared snapshot"

ACIS and Pileup

- Overlapping charge clouds in same 3×3 pixel detect island \Rightarrow pileup
 - spectral distortion: piled event energy is too large
 - grade distortion:
 - $\circ~$ altered charge distribution in 3×3 island
 - \Rightarrow "grade morphing"
 - count rate depression:
 - $\circ~\text{good grades} \Rightarrow \text{worse grades} \Rightarrow \text{bad grades}$
 - (e.g., $g0 \Rightarrow g6$; $g6 \Rightarrow g7$ or worse)
 - some bad grades rejected on board.
 - spatial shift of detected event:
 - pixel with maximum charge shifted;
 - pix with largest charge \Rightarrow center of detect island
 - $\circ~$ worst for center of near on-axis point source PSF

narrow PSF core \Rightarrow high count rate for single pixel

Ground Data

- Pileup effect on PSF: depression of central part of the PSF.
- PSF "peakier" on orbit \Rightarrow larger effect

Pileup Observations

Experiment design

- source: isolated pulsar PSR J0437-4715; count rate ${\sim}0.2~{\rm ct}~{\rm s}^{-1}$
- use different frame times to obtain different pileup rates.
 - Initial choices:

 $\tau_{\rm frame} = 0.4$ s, 1.5s, 3s, 6s, 10s (\sim 0.08–2 ct/frame)

• Observed so far:

 $\tau_{\text{frame}} = 0.4 \text{s}, \, \text{1.5s}, \, \text{3s}$

Pileup Observations: Dither

Aim: make data as similar to real data with different count rate.

- dither: max velocity is 0.3 pix/sec
 - Different frame times \Rightarrow max travel/frame varies
 - \Rightarrow shorter $\tau_{frame},$ too "slow"; longer $\tau_{frame},$ "too fast".
 - 6s, 10s frame time:

dither travel comparable to pixel size

- \Rightarrow aspect reconstruction degradation
- solution: scale dither periods inversely with $\tau_{\text{frame}}/3 \,\text{sec.}$
 - $\circ\,$ limitation: operational limitation on dither period; shortest observation not quite scaled to τ_{frame}
- shorter frame times \Rightarrow more frame transfers
 - $\circ~$ larger deadtime: $\propto 1/\tau_{\text{frame}};$ \sim 10% for $\tau_{\text{frame}}=0.4\text{s}.$
 - $\circ~$ more transfer streak events; ${\sim}$ 10% for $\tau_{\text{frame}}\,{=}\,0.4\text{s}$

The Observations

ObsID	$ au_{frame}$	Ontime	Exposure	# Frames	1-DTC
	(s)	(ks)	(ks)		
6154	0.4	25.188	22.438	57110	0.09305
6157^{\dagger}	0.4	9.450	8.570	21426	0.09305
6156	1.5	21.179	20.615	13743	0.02663
6155	3.0	24.628	24.295	8098	0.01350
$^{\dagger}\sim4'$ off-axis					

2005 Oct 31 6/20

2005 Oct 31 7/20

2005 Oct 31 8/20

Diagnosing Pileup

Is $\tau_{\text{frame}} = 0.4 \text{ s}$ data effectively unpiled?

Tools:

- grade fractions: look for grade morphing effects, but... what is zero-pileup limit?
 - ground: subassembly data
 - $\circ~$ on-orbit: faint sky sources; external calibration source
- spectral fitting: look for spectral distortion
 - o simultaneous fit to all three obsids using pileup model: pileup(phabs(bbodyrad + bbodyrad + powerlaw))

Grade Fractions [g_n/g₀₂₃₄₆], Subassembly Data

2005 Oct 31 10/20

Grade Fractions $[g_n/g_{02346}]$, Ext Cal Source

2005 Oct 31 11/20

Grade Fractions $[g_n/g_{02346}]$ vs. Frame Time

$[g_n/g_{02346}]$ vs. Frame Time; 0.4s obs off-axis

Grade Fractions $[g_n/g_{02346}]$ vs. Grade

2005 Oct 31 14/20

PSF Pileup Fitting

- simultaneous fit to all three obsids using pileup model:
 pileup(phabs(bbodyrad + bbodyrad + powerlaw))
- circular extraction radii: 2", 5", 10"

Pileup Model Spectral Fits: $\chi^2/dof = 0.98$

2005 Oct 31 16/20

2005 Oct 31 18/20

2005 Oct 31 19/20

Summary

- analyzed initial set of pileup observations
 - o frame times 0.4s, 1.5s, 3.0s
- how unpiled is the shortest frame time data?
 - \circ grade ratios \Rightarrow still significant; off-axis data closer to subassembly values
 - \circ spectral fitting with pileup model \Rightarrow \sim 5% pileup
- depression of PSF core examined for pileup ${\sim}5\%{-}35\%$

