D. Jerius

Introduction

Optical Constants

Overview

Improvements

Reflectivity

HRMA Contamination Layer

D. Jerius¹

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

INEW VS. OIL

Summary

Improvements to the HRMA Effective Area

H.M. Marshall²

¹Smithsonian Astrophysical Observatory

D. Graessle¹

P. Zhao¹

²Chandra X-Ray Center, MIT Kavli Institute

CXC Calibration Workshop 31 October 2005

Outline

HRMA Effective Area

D. Jerius

Introductior

Optical Constant

Overview Improvements Comparison of Reflectivity

HRMA Contamination Layer

- Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness
- A_{eff} Predictions Calculation Uncertainties
- New vs. Old Summary

1 Introduction

2 Optical Constants

Overview Improvements Comparison of Reflectivity

3 HRMA Contamination Layer

Observational Evidence Effects of Overlayers on *A_{eff}* Determination of the Layer Thickness

4 A_{eff}Predictions

Calculation Uncertainties

D. Jerius

Introduction

Introduction

Optical Constants

Overview Improvements Comparison of Reflectivity

HRMA Contamination Laver

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

Summary

New values for the HRMA A_{eff} have been calculated, based upon new optical constants and the addition of a very thin contamination layer to the HRMA.

D. Jerius

Introduction

Optical Constants

Overview

Improvements Comparison of Reflectivity

HRMA Contamination Layer

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff} Predictions Calculation Uncertainties New vs. Old

Summary

Optical Constants

The iridium optical constants used in the calculation of the HRMA effective area were determined as part of the *Chandra* Synchrotron Calibration Program.

Optical constants were defined by measuring the reflectivity of witness flats coated simultaneously with the *Chandra* optics.

Reflectivity measurements were undertaken both at the National Synchrotron Light Source, at Brookhaven National Labs, and at the Advanced Light Source at Lawrence Berkeley National Labs.

D. Jerius

Introduction

Optical Constants

Overview

Improvements

Comparison of Reflectivity

HRMA Contamination Layer

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

New vs. Ol

Summary

Improvements to the Optical Constants

Improvements over the previous results from the optical constant program include:

- Constants below 940 eV from measurements with the Advanced Light Source Beamline, rather than from Henke
- Constants above 940 eV derived from fits to multiple witness samples, rather than just a single mirror.

Comparison of New and Old Optical Constants

Energy [keV]

D. Jerius

HRMA Effective Area

Optical Constants

Overview

Improvements Comparison of

Reflectivity

HRMA Contamination Layer

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties New vs. Old

D. Jerius

Introduction

Optical Constants

Overview

Improvements Comparison of

Reflectivity

HRMA Contamination Layer

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties New vs. Old

Summary

Comparison of New and Old Optical Constants

Comparison of New and Old Optical Constants

Energy [keV]

(Zerodur,Cr,Ir) Reflectivity Multilayer

Constants

HRMA Effective Area

D. Jerius

Improveme

Comparison of Reflectivity

HRMA Contamination Layer

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties New vs. Old

D. Jerius

Introduction

Optical Constants

- Overview
- Comparison o
- Reflectivity

HRMA Contamination Layer

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

New vs. Ol

Summary

HRMA Contamination Layer

- Observations of stacked power-law sources with HETG/ACIS indicated a problem near the Ir M edge
- A thin hydrocarbon layer would improve the response near the edge. Because there is no experimental evidence for a contamination layer at the XRCF, we apply it to on-orbit simulations only.

D. Jerius

Introduction

Optical Constant

Overview

Improvements

Comparison of Reflectivity

HRMA Contamination Layer

Observational Evidence

Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff} Predictions Calculation Uncertainties New vs. Old

Summary

Observational Evidence

D. Jerius

Introduction

Optical Constants

- Overview
- Improvements
- Comparison of Reflectivity

HRMA Contaminatio Laver

Observational Evidence

Effects of Overlayers on A_{eff}

Determination of the Layer Thickness

A_{eff} Predictions Calculation Uncertainties

New vs. Old

Summary

The Effect of a Contamination layer on A_{eff}

 $\mathbf{A}_{\rm eff}$ Excess relative to $\boldsymbol{\ell}{=}0{:}$ HRMA; $\boldsymbol{\theta}$ = 0'

D. Jerius

Introduction

Optical Constants

- Overview
- Improvements
- Comparison of Reflectivity

HRMA Contaminatio

Observational Evidence

Effects of Overlayers on Ant

Determination of the Layer Thickness

A_{eff} Predictions Calculation Uncertainties

New vs. Old

Summary

The Effect of a Contamination layer on A_{eff}

 $\mathbf{A}_{\rm eff}$ Excess relative to $\boldsymbol{\ell}{=}0{:}$ HRMA; $\boldsymbol{\theta}$ = 0'

D. Jerius

Introduction

Optical Constants

- Overview
- Improvements
- Reflectivity

HRMA Contamination Laver

- Observational Evidence Effects of Overlaye on A_{eff}
- Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

Fitting the Contamination Layer

- The stacked sources were fit using various contamination layer thicknesses.
- The best fit was for a 22Å thick layer of CH₂.

D. Jerius

Introduction

Optical Constant

Overview

Improvements

Comparison o Reflectivity

HRMA Contamina

Layer

Observational Evidence Effects of Overlay on A_{eff}

Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

Summary

Fits

D. Jerius

Goodness of Fit

D. Jerius

Introduction

Optical Constants

- Overview
- Improvements
- Comparison of Reflectivity

HRMA Contamination Layer

Observational Evidence Effects of Overlayers on A_{aff} Determination of the Layer Thickness

A_{eff} Predictions

Calculation

New vs. Old

Summary

Calculation of A_{eff}

The prediction of the on-orbit A_{eff} is based upon

- Absolute measurements of the on-axis A_{eff} during ground based testing at the XRCF
- Predictions of the XRCF on-axis A_{eff} from raytraces in the XRCF configuration
- Derivation of correction factors to account for differences between the measured and predicted A_{eff}.
- Raytraces of the on-orbit configuration using these correction factors.

While the correction factors are derived for the on-axis A_{eff} , they are applied uniformly for all source positions.

D. Jerius

Introduction

- Optical Constant
- Overview
- Improvements
- Comparison of Reflectivity

HRMA Contaminatio

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff} Predictions

Calculation

New vs. Old

Summary

XRCF HRMA Effective Area Data vs. Raytrace XRCF HRMA Effective Area within 2 mm Aperture 1000 **Ravtrace** Prediction SSD C-K Continuum Data Raytrace w Polynomial Scaling 800 ♦ FPC Line Data ∧ SSD Line data (cm²) 600 **Effective Area** 400 200 n 0 2 8 10 6 Energy (keV)

XRCF Corrections

D. Jerius

Introduction

Optical Constants

- Overview
- Improvements
- Comparison of Reflectivity

HRMA Contamination Layer Observational Evidence Effects of Overlayers

Calculation

New vs. Old

Summary

XRCF Corrections

D. Jerius

Introduction

Optical Constant

Overview Improvements Comparison of

HRMA Contamination Layer

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff} Predictions Calculation Uncertainties

New vs. Old

Uncertainties in the Aeff

The new release of the HRMA A_{eff} tabulates the current *quantifiable* uncertainties in the A_{eff} , which derive from the following sources:

- 1 Uncertainties in the optical constants. These are negligible.
- Ouncertainties in the A_{eff} measurements at the XRCF. These are essentially quantified as the errors in the spread of the SSD and FPC measurements.
- 3 Uncertainties in the raytraces due to insufficient sampling of the model phase space. This can be made negligible.

In practice, the only significant quantifiable errors are the XRCF measurement errors.

New and Old A_{eff}

HRMA Effective Area

D. Jerius

Introduction

Optical Constants

Overview

Improvements

Comparison of Reflectivity

HRMA Contaminatio

Observational Evidence Effects of Overlayer on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

New vs. Old

New and Old A_{eff}

Effective Area D. Jerius

HRMA

Introduction

Optical Constants

Overview

Improvements

Comparison of Reflectivity

HRMA Contaminatio

Observational Evidence Effects of Overlayer on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

New vs. Old

New and Old A_{eff}

D. Jerius

HRMA Effective Area

Optical Constants

Overview

Improvements

Comparison Reflectivity

HRMA Contaminatio

Observational Evidence Effects of Overlayer on A_{aff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

New vs. Old

D. Jerius

New and Old A_{eff}

Layer Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff}Predictions Calculation Uncertainties

New vs. Old

D. Jerius

Introduction

Optical Constant

Overview Improvements Comparison of Reflectivity

HRMA Contamination Layer

Observational Evidence Effects of Overlayer on A_{aff} Determination of the Layer Thickness

A_{eff} Predictions Calculation Uncertainties

New vs. Old

Summary

Galaxy Cluster Fits

[Thanks to A. Vikhlinin]

D. Jerius

Introduction

Optical Constants

- Overview
- Improvements
- Comparison o Reflectivity

HRMA Contamination Laver

Observational Evidence Effects of Overlayers on A_{eff} Determination of the Layer Thickness

A_{eff} Predictions Calculation Uncertainties

New vs. Old

Summary

- The HRMA *A_{eff}* has been regenerated, incorporating new optical constants and a thin contamination layer on the HRMA
- The new A_{eff}improves fits near the Ir M edge, as well as at lower energies
- The new A_{eff} is significantly larger than the previous version