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ertainties are almost universally ignored in 
urrent astrophysi
al X-ray data analyses.Yet modern X-ray observatories, su
h as Chandra and XMM-Newton, frequently a
quire data for whi
h photon
ounting statisti
s are not the dominant sour
e of error. In
luding allowan
e for performan
e un
ertainties is,however, te
hni
ally 
hallenging in terms of both understanding and spe
ifying the un
ertainties themselves, andin employing them in data analysis. Here we des
ribe Monte Carlo methods developed to in
lude instrumentperforman
e un
ertainties in typi
al model parameter estimation studies. These methods are used to estimatethe limiting a

ura
y of Chandra for understanding typi
al X-ray sour
e model parameters. The present studyindi
ates that, for ACIS-S3 observations, the limiting a

ura
y is rea
hed for � 104 
ounts.Keywords: Chandra X-ray Observatory, X-ray Opti
s, Calibration, Un
ertainties, Monte Carlo Methods1. INTRODUCTIONThe development of X-ray astronomy was pioneered primarily by ro
ket and satellite missions 
arrying gas-�lledproportional 
ounters. The response of this type of dete
tor to X-ray photons is 
hara
terised by an ele
troni
pulse with a magnitude that depends on the energy of the ionising photon and on sto
hasti
 aspe
ts of theintera
tion of this photon with the dete
tor and its gas. The signal resulting from a number of X-ray events of agiven energy is a fairly broad distribution of \pulse heights" with a peak that is approximately proportional to thephoton energy. The instrument response of su
h dete
tors provides a low degree of spe
tral energy resolution ofE=�E �\a few". For investigating the nature of the spe
trum of an astrophysi
al sour
e, this type of instrumentresponse often pre
ludes dire
t measurement of sour
e parameters or spe
tros
opi
 diagnosti
s be
ause signalsfrom di�erent energies are strongly overlapping and 
annot be easily separated. Instead, the nature of this typeof data prompted the use of parameterised sour
e models whi
h 
ould be 
ompared with observation through
onvolutionwith the instrument response and subsequent appli
ation of a \goodness of �t" (typi
ally �2) statisti
.Best-�t model parameters are then found through a minimisation s
heme su
h as Levenberg-Marquardt. Thisremains the approa
h used today for the great majority of analyses of X-ray observations from missions past andpresent, using \�tting engines" su
h as XSPEC1 and Sherpa.2In
orporating independent un
ertainties in both observational data and the parameterised models used for
omparison is, at least in prin
iple, quite straightforward for least-squares type minimisation. Though moreproblemati
 in the very low 
ount limit that o

urs frequently in X-ray observations of 
elestial sour
es, pho-ton 
ounting un
ertainties are routinely in
orporated in all modern astrophysi
al X-ray parameter estimationanalyses. They are also the only un
ertainties 
onsidered: instrument response un
ertainties and un
ertaintiesin the models being �t to the data are almost universally ignored. Su
h dramati
 simpli�
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is prompted mostly by analyti
al and 
omputational expedient: un
ertainties in the response of a typi
al X-rayteles
ope and dete
tor system are not independent and easily in
orporated but are 
orrelated in 
ompli
atedways. Likewise, un
ertainties in sour
e models, su
h as those used to model hot, opti
ally-thin astrophysi
alplasmas, might be subje
t to a very 
omplex set of un
ertainties involving an extensive assemblage of atomi
 data,all 
orrelated through the plasma ionization balan
e, atomi
 level populations and element abundan
e. Thereis no standard set of pro
edures for in
orporating 
ompli
ated 
orrelated systemati
 un
ertainties in non-linearparameter estimation: the approa
hes used for treating independent errors simply do not apply.The 
omplexity of the 
orrelated un
ertainties problem in X-ray astronomy is a daunting prospe
t for an-alyti
al solution and suggests instead the use of Monte Carlo te
hniques. Indeed, Monte Carlo methods wereemployed to derive the original 
alibration requirements for the Chandra mirrors.3 Here we present methodsto treat instrument response un
ertainties in a reasonably realisti
 way. We apply these to the Chandra X-rayObservatory Advan
ed CCD Imaging Spe
trometer (ACIS) and to assess the limiting a

ura
y of this systemfor typi
al parameter estimation analysis. We also dis
uss how this method 
an be adopted for publi
 release2. CORRELATED UNCERTAINTIES IN INSTRUMENT CALIBRATIONComprehensive fully-empiri
al ground-based 
alibration of X-ray instrumentation to a desired a

ura
y prior to
ight is often not realisti
ally a
hievable: too many subassembly 
omponents might require sampling at moreenergies than 
an be rea
hed within reasonable syn
hrotron or laboratory time. Instead, the response of 
ightinstruments are generally 
hara
terised by analyti
al or semi-empiri
al performan
e models underpinned by amore limited set of �du
ials from laboratory measurements. The un
ertainties in the resulting response 
urvesare prime examples of un
ertainties that are 
orrelated: response models, for example, provide 
ross-talk betweenindividual laboratory measurements. Even the latter might be 
orrelated to some extent through, for example,
ommon 
alibration un
ertainties of the laboratory instrumentation.The un
ertainties, �(E), in a ve
tor su
h as a teles
ope e�e
tive area as as fun
tion of energy, A(E), are thenmore properly des
ribed not by s
alar quanties at di�erent energies, but by a matrix of related un
ertainties.For example, �(E) = 0BBBBB� �E1;E1 �E2;E1 : : : �E(n�1);E1 �En;E1�E1;E2 �E2;E2... . . . ...�E1;E(n�1) �E(n�1);E(n�1) �En;E(n�1)�E1;En : : : �E(n�1);En �En;En
1CCCCCA (1)where �Ei;Ej =q�2Ei;Ei + �2Ej ;Ej � 2�Ei;Ej�Ei;Ei�Ej ;Ej (2)In the example error matrix in Eqn. 1, diagonal elements �Ei;Ei represent the absolute un
ertainties at energiesEi. However, these un
ertainties are not independent be
ause physi
ally the instrument does not behave dis-
ontinuously between adja
ent energy bins, ex
ept perhaps at the absorption edges of its 
onstituent materials.The o�-diagonal elements then represent the relative un
ertainty in the response between energies Ei and Ej .Physi
ally, it is to be expe
ted that �Ei;Ej in
reases with in
reasing j � i. The 
orrelations between energy binsEi and Ej are represented by a 
ovarian
e matrix of values �Ei;Ej ; generally, the 
orrelation �Ei;Ej de
reaseswith in
reasing j � i.While an error matrix su
h as the above might be easy to write down in theory, there are as yet no simple\goodness-of-�t" formulae or well-a

epted methods to employ su
h a spe
i�
ation in traditional parameterestimation studies. In pra
ti
e, populating su
h an error matrix with physi
ally meaningful quantities is alsofar from trivial and requires a 
omprehensive spe
i�
ation of the instrument and its un
ertainties; moreover, forsu
h a matrix to be of use, self-
onsisten
y among all the possible 
ombinations of �Ei;Ej must be enfor
ed.
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Figure 1. Illustration of the main 
ontributions to the instrument response un
ertainties in the Chandra ACIS-S photonpath. 3. MONTE CARLO APPROACH FOR CHANDRA ACIS-SMonte Carlo \brute for
e" methods o�er an alternative to the manifold 
omplexity of developing a suitableerror matrix and asso
iated statisti
al methods to use it. In a Monte Carlo approa
h, the 
alibration of aninstrument 
an be sampled or altered within existing un
ertainty bounds and the e�e
ts of su
h perturbationson the instrument response assessed through the distributions of parameters obtained from least-squares �tsemploying the di�erent response realisations. Su
h an approa
h would have been 
omputationally prohibitivesome years ago, when simply performing a single �t required signi�
ant 
omputation time. With the pro
essingpower available today, thousands of �ts 
an be undertaken in relatively short order.The proof-of-
on
ept Monte Carlo method we des
ribe here has been applied to the on-axis ba
k-illuminatedS3 
hip of the Chandra ACIS-S dete
tor; this 
urrently being the most used 
on�guration of the observatory.3.1. Sour
es of Un
ertainty in the Photon ResponseThe Chandra ACIS-S observing 
on�guration in
ludes along the photon path the High Resolution Mirror Assem-bly (HRMA) and the ACIS dete
tor. The latter is 
omprised of an Opti
al Blo
king Filter (OBF) and the CCDsthemselves. The main un
ertainties in the response of these 
omponents are shown s
hemati
ally in Figure 1.Our Monte Carlo approa
h treats ea
h subassembly separately using two di�erent methods: (a) use ofsubassembly model responses 
omputed for di�erent input parameters sampled within an un
ertainty range(HRMA 
ontamination overlayer, ACIS QE, ACIS gain and pulse height distribution as a fun
tion of energy);and (b) a more arbitrary Perturbation Fun
tion that is a smooth 
urve deviating from unity within a givenenergy range by an amount that lies within the un
ertainty of the subassembly response. These are des
ribed inmore detail below.3.2. The Perturbation Ve
torA 
exible means (literally) of introdu
ing variations into the subassembly responses is through a series of pertur-bation ve
tors. Ea
h subassembly response is quite naturally divided up by the absorption edges of its 
onstituentmaterials. Prominent examples are the C K edges in the OBF, the Si K edge in the ACIS QE, and the Ir M edgein the HRMA. At energies with signi�
ant edge stru
ture, the subassembly responses are generally less 
ertainthan in regions with smooth variations as a fun
tion of energy; the \jump" dis
ontinuity over an edge alsointrodu
es some latitude in relative un
ertainty between the responses above and below the edge. We thereforedivide ea
h subassembly response into se
tions de�ned by prominent edges or dis
ontinuities. Within ea
h regionwe 
onstru
t a perturbation ve
tor, �(E), de�ned by parameters that 
an be 
hosen at random su
h that �(E)lies within a pre-de�ned un
ertainty envelope. Ve
tors for neighbouring energy ranges are tied together by an\edge 
onstraint" that spe
i�es the maximum deviation permitted in the magnitude of the jump dis
ontinuity.The perturbation ve
tor is illustrated s
hemati
ally in Figure 2a.The perturbation ve
tors for the di�erent energy ranges of a subassembly are 
on
atenated to produ
e asingle ve
tor, �(E). In the present method, we 
onstru
t separate ve
tors for the HRMA e�e
tive area, the OBF
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Figure 2. Left: Illustration of a segment of a perturbation ve
tor used to apply deviations from a nominal subassemblyresponse within a given energy range. Within ea
h energy range, Elo{Ehi, a smooth 
urve is generated that is 
onstrainedto lie within the grey shaded region de�ned by the un
ertainties �lo and �hi, and also to join up with neighbouringsegments within the edge 
onstraints �edge. Right: The trun
ated normal distribution used to represent the distributionof 
alibration un
ertainties that are used in the perturbation ve
tor and 
omputer model realisations.transmittan
e, the OBF 
ontamination layer, and the ACIS QE. In the 
ases of the HRMA and ACIS QE, theperturbation ve
tors supplement the variations indu
ed by sampling the predi
tions of 
omputer models (seeSe
t. 4 below). For any given set of ve
tors, the modi�ed e�e
tive area of the system, A0(E), is de�ned by theprodu
ts of the ve
tors and nominal e�e
tive area, A(E):A0(E) = �HRMA(E)�
ontam(E)�OBF (E)�QE(E)A(E):An arbitrary number of e�e
tive areas, A0(E), all di�ering from the nominal area by di�erent perturbationswithin the spe
i�ed un
ertainty limits, 
an be generated either on-the-
y or to build up a library of e�e
tivearea �les.3.3. Distribution of Un
ertaintiesIn order to implement any Monte Carlo sampling of the instrument response within spe
i�ed un
ertainties, someknowledge of the distribution of the un
ertainties is of 
ourse essential. Un
ertainties are often spe
i�ed in termsof \�", with the underlying impli
it assumption that they are distributed a

ording to the normal distributionwhere � takes its usual meaning in whi
h there is a 68% probability that the true value lies within �1� of theestimated one. The normal distribution naturally des
ribes measurements of summary statisti
s of any quantity,espe
ially when a large number of measurements are made. However, it fails to properly des
ribe anything thatmay have a skewed, or otherwise systemati
ally di�erent distribution. It inevitably has extended wings, with,for example, about 32% probability that the true value deviates from the estimate by more than 1�.In the 
ontext of instrument 
alibration, the quantities being measured are not 
ompletely unknown andthese extended wings often do not 
orrespond to resear
hers' intuition as to the true limits of the un
ertaintiesof a measurement. Determining the a
tual distributions of the real 
alibration un
ertainties and their momentsis in pra
ti
e extremely diÆ
ult. Su
h measurements are often des
ribed with phrases like \the un
ertainties areno larger than 10%". Rather than admitting a 1 in 3 probability that the true value lies outside a 10% errorbudget, in su
h a des
ription the resear
her is 
on�dent (rightly or wrongly!) that, based perhaps on experien
eor knowledge of the system being 
alibrated that is diÆ
ult to spe
ify in rigorous statisti
al detail, the likelihoodof the true error being larger than 10% is extremely small or negligible. Su
h a distribution is probably notwell-des
ribed by either a uniform distribution between the limits (�10%) or by a normal distribution, but bysomething with mu
h less extended wings, though perhaps still peaked at the 
enter. For this study, we haveadopted a trun
ated normal distribution to represent the distribution of un
ertainties. In a Bayesian 
ontext,these are informative prior distributions on the parameters that des
ribe the 
alibration, and are simply theprodu
t of a Gaussian with varian
e �2 and a re
tangular Step fun
tion with unit density between ��. Theseare then spe
i�ed by � in the traditional fashion, ex
ept that the normal distribution is trun
ated at 1�. Our1� errors here then represent the sharp 
ut-o� in probability that is intended to re
e
t the \gut feeling" of



experien
e and prior knowledge that is otherwise very diÆ
ult to in
lude. This trun
ated normal distribution isillustrated in Figure 2b.4. ASSESSMENT OF SUBASSEMBLY RESPONSE UNCERTAINTIESIt is often (but not always) possible to design laboratory tests su
h that Poisson un
ertainties from photon
ounting devi
es are negligible. Ex
eptions might in
lude \
at �eld" measurements that 
an require a vastnumber of 
ounts to 
over a large �lter or to populate a large dete
tor with �ne spatial resolution. When Poissonun
ertainties are very small|in the 
ase of Chandra 
alibration \very small" 
an be taken to mean less than1%|the systemati
s of the measurement system dominate. The un
ertainties in the 
alibration of nearly allaspe
ts of the Chandra teles
ope and dete
tor system are dominated by these systemati
s.Chandra Calibration measurements were performed in di�erent laboratories and syn
hroton fa
ilities, and atthe NASA X-ray Calibration Fa
ility at the Marshall Spa
e Flight Center.4 It is well beyond the s
ope of thisarti
le to des
ribe these 
alibration a
tivities and results; the reader is instead referred elsewhere for detaileddes
riptions relevant to ACIS-S.4{10Table 1. Adopted \1�" fra
tional un
ertainties and edge 
onstraints (see text and Figure 2a) for the 
omponents of theHRMA and ACIS subassembliesComponent Elo Edge Elo [keV℄ Ehi [keV℄ �lo �hi �edgeHRMA E�e
tive Area . . . 0.05 2.156 0.07 0.06 0.02Ir M4 3d3=2 2.156 3.183 0.05 0.05 0.01Ir M1 3s 3.183 6.400 0.05 0.05 0.005. . . 6.400 12.0 0.05 0.20 . . .OBF Contamination . . . 0.05 0.284 0.50 0.08 0.04C K 1s 0.284 0.410 0.08 0.05 0.03N K 1s 0.410 0.543 0.05 0.03 0.01O K 1s 0.543 0.697 0.03 0.03 0.01F K 1s 0.697 12.0 0.01 0.005 . . .OBF Transmittan
e . . . 0.05 0.284 0.15 0.07 0.03C K 1s 0.284 0.543 0.05 0.04 0.02O K 1s 0.543 1.560 0.03 0.03 0.02Al K 1s 1.560 12.0 0.03 0.01 . . .ACIS-S3 QE . . . 0.05 0.543 0.10 0.05 0.03O K 1s 0.543 1.839 0.03 0.03 0.03Si K 1s 1.839 12.0 0.03 0.03 . . .The adopted \1�" un
ertainties in the di�erent energy ranges for the di�erent subassemblies used in ourtrun
ated normal distribution Monte Carlo perturbation ve
tors, together with edge 
onstraints (des
ribed abovein Se
t. 3.2) are listed in Table 1. These numbers were arrived at through study of the 
alibration data andreports and through the hands-on experien
e of the authors with Chandra data and observations. In 
ases ofdoubt (ie most of the numbers in Table 1), we admit to a mild 
onservative tenden
y, allowing perhaps slightlylarger, rather than smaller, un
ertainties than information sour
es might have implied.In providing the numbers in Table 1, we emphasise that the goal of the present 
urrent study is not toprovide a �nal, rigorous assessment of the un
ertainties of ea
h of the Chandra subassemblies, but to make the�rst attempt at reasonable estimates of these for use in assessing the limiting a

ura
y of Chandra, and fordeveloping the methods to do so.Some very brief explanatory notes on these individual 
omponents are in
luded below.4.1. High Resolution Mirror AssemblyThe HRMA area is de�ned by meti
ulous measurements of the re
e
tivity of witness 
ats,9 XRCF measurementsof the mirror throughput11 and a sophisti
ated ray tra
e 
omputer model.12



Figure 3. Illustration of the relative 
hange in the HRMA e�e
tive area 
aused by di�erent hydro
arbon 
ontaminationlayers. The range shown 
orresponds to the nominal adopted 22 � 6 �A layer thi
kness.The XRCF 
ow proportional 
ounters (FPCs) and solid state sili
on dete
tors (SSDs) were independently
alibrated at syn
hrotron fa
ilities to a

ura
ies now believe to be of order 3%, in
luding allowan
e for allsystemati
 terms; this number then probably represents about the best absolute a

ura
y a
hievable throughXRCF measurements at that time. Additional small sour
es of un
ertainty in
lude, e.g., in
omplete modellingof the bowing of the FPC windows and the obs
uration of their mesh supports,13 and small non-uniformitiesand time-variability in the X-ray beam.Un
ertainties in 
alibration at XRCF were e�e
ted by systemati
 di�eren
es between FPC and SSD mea-surements whi
h 
ould not be re
on
iled within the Poisson errors of measurement. These di�eren
es amount tobetween 5 and 10% or so, with the true values believed to lie between these extremes.11 The un
ertainty envelopeen
ompassing these errors is then about �5%. Slightly larger un
ertainties rising to 7% have been in
luded atthe lowest energies.Problems with mat
hing in-
ight observations of strong 
ontinuum sour
es in the region of the IrM4 edge at2.156 keV using the Chandra transmission grating spe
trometers were un
overed after laun
h.14 This has beenattributed to a thin hydro
arbon 
ontamination layer approximately 20 �A thi
k that is believed to have builtup on the mirrors prior to laun
h. It modi�es the HRMA area in the Ir M edge region by up to 10-15 %. Raytra
e models for di�erent overlayer thi
knesses have been used to a

ount for the di�erent HRMA areas possiblewithin the range of un
ertainty of the layer; these areas were sampled using the 
urtailed normal distributionand an overlayer thi
kness and 1� un
ertainty of 22� 6 �A. The e�e
t of this un
ertainty on the HRMA area isillustrated in Figure 3.4.2. Opti
al Blo
king Filter and CCD Quantum EÆ
ien
yThe X-ray transmittan
e of a �lter su
h as the ACIS OBF 
an be measured relatively easily at a syn
hrotronfa
ility by 
omparing the intensity of a mono
hromati
 beam seen through the �lter with that when the �lteris removed. The ACIS OBF was 
alibrated at the National Syn
hrotron Light Sour
e15 and is probably thebest-
alibrated 
omponent of the Chandra ACIS-S system. Sour
es of un
ertainty are again dominated bysystemati
s, su
h as out-of-band transmission of the mono
hromator used for 
alibration measurements, and�lter non-uniformity; the latter is spe
i�ed as being uniform in transmittan
e to \better than 2%".15 We haveassessed our 1� un
ertainties at 5% at the C K edge, tapering down to 3% at Al K and 1% at higher energieswhere the transmittan
e approa
hes unity. While edge stru
ture is likely to be less a

urately represented,dis
ontinuities between di�erent regions appears well-
onstrained and we assess a 2% un
ertainty at C K andO K edges.The ACIS CCD QE was 
alibrated in the laboratory and at XRCF; 
orre
tions have also been made promptedby in-
ight observations, and in parti
ular 
on
erning the ratio of the QEs of front-illuminated and ba
k-illuminated devi
es.14, 16 Re
ent re-analysis of XRCF data16 reveals statisti
al un
ertainties in the measurementof the 
hip-averaged QEs of � 1-3%; the �nal adopted model for the S3 
hip agrees with the measurements to



Figure 4. Relative 
hanges in the model ACIS S3 QE 
aused by adoption of di�erent parameters for the depletion depth(left) and SiO2 thi
kness (right). The former shows the e�e
t of a �20% 
hange; the 1� range adopted here is �13 %,whi
h 
orresponds to a range of about �10% in the QE at 10 keV.within about 5%. QE uniformity maps indi
ate residual relative un
ertainties of 1-2%17 We have levied 1�un
ertainties of 3% for the absolute QE and its prin
ipal edges (O K 0.543 keV and Si K 1.839 keV), with alarger un
ertainty of 10% at the lowest energies, tapering to 5% below the O K edge.In addition to the perturbation ve
tor approa
h, we also used Monte Carlo samples of the ACIS QE 
omputedusing a semi-analyti
al \slab and stop" model of the ACIS CCD gate stru
ture.18 Parameters varied were thedepletion depth and SiO2 layer. At the time of writing of the pre-laun
h ACIS 
alibration report,18 theun
ertainty in the depletion depth was stated as �15%; we adopted a slightly lower �13% as our perturbationve
tor allows for some additional un
ertainty. For the SiO2 layer, we adopted an un
ertainty of �20% from thenominal value. The e�e
ts of the un
ertainties in depletion depth and SiO2 layer are illustrated in Figure 4; theformer a�e
ts primarily the higher energies, while the latter be
omes insigni�
ant for energies above 1 keV.4.3. Contamination LayerThere are three aspe
ts of un
ertainty in the Chandra ACIS-S e�e
tive area resulting from the 
ontaminationlayer that has been building up on the ACIS-S OBF: the 
ontaminant 
hemi
al 
omposition, its average thi
knessat any given time, and its spatial uniformity. The 
omposition of the 
ontamination layer has been assessed toa

ura
ies of a few per
ent in the opti
al depths of the most important elements (C, O, F) using observations ofstrong 
elestial 
ontinuum sour
es.10 The spatial uniformity and 
hange in time of the 
ontamination has beenmeasured using both the on-board External Calibration Sour
e and spatially-extended 
elestial sour
es.17, 19The un
ertainties in the derived e�e
tive area using the time-dependent 
ontamination model19 will also betime-dependent to some extent: un
ertainties 
an be expe
ted to be slightly larger in later observations whenopti
al depths are greater. The nominal ACIS-S e�e
tive area upon whi
h our Monte Carlo experiments arebased 
orresponds to an observation date of 2002 September 9|well after the dis
overy of the 
ontaminationproblem and typi
al of the dates of some of the observations used for 
hara
terising its 
omposition.10 Ouradopted un
ertainties in Table 1 taper from 8% at the C K edge down to 0.5% at high energies, with un
ertaintiesat the C, N, O and F edges of 4, 3, 1,and 1%, respe
tively.4.4. CCD Gain and Pulse Height ResponseUnlike the quantities dis
ussed so far, the ACIS CCD gain and pulse height response does not enter into thee�e
tive area of the instrument. These aspe
ts of the ACIS response are a

ounted for in the Chandra Intera
tiveAnalysis of Observations (CIAO) software using a 2-D response matrix �le (RMF) that en
apsulates the mappingbetween the in
oming photon energy and the resulting dete
tor pulse heights. The gain is a fun
tion of positionon the CCD and evolves with time as a result of gradual 
hanges in the CCD 
harge transfer ineÆ
ien
y (andalso be
ause of ele
troni
 drift in the I2 
hip).20 The mean se
ular drift is known to of order 0.2% from ECSobservations and observations of extended 
elestial sour
es.20 The gain itself is thought to have un
ertainties of



Figure 5. Frequen
y distributions of best-�t parameters obtained for typi
al bla
kbody, thermal plasma and powerlawmodels from XSPEC for syntheti
 data sets 
ontaining 104 (upper panels) and 105 (lower panels). Bla
k histograms aredistributions resulting from 1000 Monte Carlo samplings of the syntheti
 data allowing Poisson noise variations alone.Red histograms are the distributions of parameters resulting from �ts to a single syntheti
 data set using 1000 MonteCarlo-generated e�e
tive areas and response matri
es.1% near 0.7 keV, 0.5% near 1.5 keV, and of order 0.2% or less at 4 keV and above, with un
ertainties in thepulse height FWHM being of order 1%.21We modelled the gain and pulse height un
ertainties using the 
ode 
al
rmf2, whi
h is a more general and
exible version of the CIAO program mka
isrmf. A Perl wrapper program samples the un
ertainties in gain andFWHM and runs 
al
rmf2, 
reating a large library of RMF �les (typi
ally 1000).5. THE LIMITING ACCURACY FOR PARAMETER ESTIMATIONOne of the goals of this study is to determine how a

urately Chandra 
an probe the 
hara
teristi
s of di�erent
ategories of 
elestial X-ray sour
e. Observations in whi
h photon noise is smaller than un
ertianties in thee�e
tive area are now routine; un
ertainties in parameters obtained from su
h observations 
ould be grosslyunderestimated if 
alibration un
ertainties are ignored. Knowledge of the limiting a

ura
y of the system 
analso help de�ne maximum observation integration times beyond whi
h in
reased signal strength provides nofurther insights, and to assess the feasibility of observations that might prove of little s
ienti�
 value when
alibration un
ertainties are a

ounted for.Our method for assessing the e�e
ts of the Monte Carlo sampled e�e
tive areas on a given analysis 
onsistsof two steps: (i) generation of a syntheti
 data set using the spe
tral model of interest and a nominal e�e
tivearea; (ii) repeated parameter estimation using a di�erent e�e
tive area and response matrix ea
h time. A sampleof e�e
tive areas used is 
ompared with the nominal one in Figure 6. The distributions of the model parametersfound from step (ii) 
an then be 
ompared with those resulting from photon noise alone. For 
onsisten
y, weassess this by examining the distribution of best-�t parameters obtained for a large sample of syntheti
 data setsidenti
al ex
ept for variations due to Poisson noise.We 
arried out 
omputations as des
ribed above using version 12.2.0 the XSPEC program1 driven by a Perlmodule to 
ontrol the Monte Carlo aspe
ts and data I/O. Models investigated were: typi
al absorbed bla
kbodieswith parameters temperature, neutral H 
olumn density NH , and normalisation; opti
ally-thin thermal plasmaswith solar 
omposition and parameters temperature, metalli
ity, NH , and normalisation; and power laws withparameters slope �, NH , and normalisation. The 
omputations were repeated for syntheti
 ACIS-S3 spe
tra
ontaining 104 and 105 
ounts; the former represents the signal in a typi
al observation of reasonable quality,while the latter probes the 
ase in whi
h photon noise is negligible. Typi
al distributions of parameters resultingfrom 
alibration un
ertainties and Poisson noise for 104 and 105 
ount syntheti
 spe
tra are illustrated in Figure 5.



Figure 6. Left: The nominal \seed" Chandra ACIS-S e�e
tive area (bla
k) 
ompared with a sample of 30 e�e
tiveareas generated using the Monte Carlo modi�
ation method des
ribed in the text (grey). Right: Modes and highestposterior density �95% 
on�den
e intervals obtained for the bla
kbody models investigated using XSPEC for syntheti
data sets 
ontaining 105 
ounts. The y-axes 
orrespond in both 
ases to the ratio of the input parameter to that retrievedin the model �t. Bla
k error bars 
orrespond to 1000 Monte Carlo samplings of the syntheti
 data and show the e�e
tsof Poisson noise variations alone. Dashed error bars 
orrespond to �ts to a single syntheti
 data set using 1000 MonteCarlo-generated e�e
tive areas and response matri
es.In Figures 6 and 7, we illustrate the mode and highest posterior density �95% 
on�den
e intervals for all thedi�erent models examined.The distribution of best-�t parameters in the upper panels of Figure 5 
orresponding to simulations with104 
ounts show that the retrieved parameter errors due to 
alibration un
ertainties are at least as large as thosedue to Poisson noise. Taken at fa
e value, these results indi
ate that obtaining signi�
antly more than 104
ounts will lead to no further gain in a

ura
y. If we have overestimated the 
alibration un
ertainties, then it islikely that this number should be slightly higher.Comparison of the distributions for 104 and 105 
ounts show little 
hange between those 
orresponding to
alibration un
ertainties, ex
ept in some 
ases a small 
hange in 
entroid. This is not surprising sin
e the 
entroidfor 104 
ount simulation will be subje
t to some Poisson un
ertainty indi
ated by the bla
k histograms in theupper panels.We note that some parameters distributions are naturally skewed or shifted from the input values whi
hare all well-represented by the sharper peaks of the bla
k histograms 
orresponding to Poisson errors in thelower panels; parti
ular examples are the parameters for the opti
ally-thin thermal plasma with kT = 2 keV,NH = 1020 
m�2 and solar metalli
ity.The summary statisti
s shown for all the models investigated here in Figures 6 and 7 indi
ate fairly largeun
ertainties in some parameters. Most 
onspi
uous are those for the 
ool kT = 0:1 keV absorbed bla
kbody,and for low 
olumn densities. These are not surprising sin
e they depend heavily on the low energy 
alibration forwhi
h the un
ertainties in this 
urrent study are largest. Surprises in
lude the retrieved temperature for a 5 keVopti
ally-thin plasma with NH = 1022 
m�2, and the power law models with a relatively high NH = 1023 
m�2.The limiting a

ura
y for estimation of the metalli
ity of an opti
ally-thin plasma appears to be about 10%, with



Figure 7. Same as Figure 6 right panel for the thermal plasma and powerlaw models investigated here.more absorbed models showing largest un
ertainty. It seems likely that when estimating individual abundan
esthe un
ertainties will be larger, though 
on�rmation must await a more thorough study.6. PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY REDUCTION ANDEXTENSION TO PUBLICLY AVAILABLE SOFTWAREThe end goal of this study is to develop a system whereby users of the CIAO software 
an routinely in
orporate
alibration un
ertainties in analyses of Chandra data. The Monte Carlo experiments des
ribed here were under-taken using a fairly 
umbersome assemblage of spe
ialised software and data. This method is 
omputationallyintensive and is diÆ
ult to implement as a portable software solution in the various extant �tting environmentssu
h as Sherpa and XSPEC. We have therefore investigated methods by whi
h 
alibration un
ertainties mightbe 
ompressed into a mu
h more 
ompa
t format that 
ould be used dire
tly in a module of existing CIAOsoftware. Prin
ipal Component Analysis appears to be well-suited to this problem.Prin
ipal Component Analysis (PCA) is a linear transformation that 
hooses su

essive new 
oordinatesystems for the data set su
h that the greatest varian
e by any proje
tion 
omes to lie on the �rst axis (
alledthe �rst prin
ipal 
omponent), the se
ond greatest varian
e on the se
ond axis, and so on. The low-order
omponents generally 
ontain the most important aspe
ts of the variations in the data. By keeping lower-orderprin
ipal 
omponents and ignoring higher-order ones, PCA 
an be used for redu
ing dimensionality in a datasetwhile retaining the 
hara
teristi
s that 
ontribute most to its varian
e.Experiments in applying PCA to our Monte Carlo E�e
tive area library indi
ate that all variations in the datadown to a level of a few per
ent 
an be 
ontained in of order 10 prin
ipal 
omponents. A PCA de
omposition ofthe e�e
tive areas represented in Figure 6 is shown in Figure 8.We are developing the CIAO sherpa �tting engine to use the PCA de
omposition of instrument responseun
ertainties through a Markov-Chain Monte Carlo (MCMC) te
hnique, whereby a new e�e
tive area is realisedat ea
h iteration of the �t. Su
h a system should be highly portable, 
an be generalised to other aspe
ts of
alibration (su
h as the point spread fun
tion) and would be easily applied to other instruments and missions.The MCMC approa
h is 
omputationally eÆ
ient, sin
e full probability distributions of the model parameters
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log(Energy)Figure 8. The �rst eight 
omponents from a Prin
ipal Component De
omposition of the e�e
tive areas representedin Figure 6. The left and right-
enter 
olumns show the prin
ipal 
omponent dire
tions superimposed on the range ofvariation of the proje
tions of the 
urves onto ea
h 
omponent (grey). The 
ontribution of these proje
tions to the totalvariation in the data is given in the title of ea
h panel. The left-
enter and right 
olumns show the 
umulative 
urveresiduals' range of variation (grey).are obtained as a matter of 
ourse, in
luding the e�e
ts of both statisti
al and systemati
 errors, in a singleMCMC �t. 7. SUMMARY AND FUTURE REFINEMENTSWe have des
ribed Monte Carlo methods to in
lude a reasonably realisti
 des
ription of the un
ertainties inthe 
alibration of the Chandra ACIS-S system in parameter estimation analyses. Appli
ation of this systemto syntheti
 data provides insights into the limiting a

ura
y of the observatory for typi
al 
lasses of 
elestialX-ray sour
e. Based on our assessments of the 
urrent un
ertainties in e�e
tive area, gain and pulse heightdistributions, it appears that the limiting a

ura
y of Chandra is rea
hed in spe
tra 
ontaining about 104 
ounts.Beyond this, errors in in best-�t parameters due to 
alibration un
ertainties 
ompletely dominate those due tophoton noise.Current work aims to extend this type of analysis to the other instrument 
ombinations of Chandra. However,there are also several obvious ways that the 
urrent proof-of-
on
ept system 
an be improved. These in
lude:allowan
e for asymmetri
 un
ertainties; more extensive use of Monte Carlo-driven model response predi
tions;and the imposition of further observational 
onstraints, su
h as, for example, might be a�orded on the overall\smoothness" of the e�e
tive area by high quality grating observations of 
ontinuum sour
es.Improvements in model predi
tions are perhaps most readily a
hievable for the HRMA and its alignmenton whi
h the e�e
tive area also depends. The ACIS CCD model used here is also s
hemati
ally simple ande�e
ts su
h as the es
ape photon fra
tion from 
uores
en
e following events at energies above the Si K edge are




urrently not in
luded. These improvements are 
urrently under investigation and will be reported on in futurepubli
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