
Sherpa: a mission-independent data analysis appli
ationPeter E. Freeman, Stephen Doe, Aneta SiemiginowskaHarvard-Smithsonian Center for Astrophysi
sABSTRACTThe ever-in
reasing quality and 
omplexity of astronomi
al data unders
ores the need for new and powerful dataanalysis appli
ations. This need has led to the development of Sherpa, a modeling and �tting program in the CIAOsoftware pa
kage that enables the analysis of multi-dimensional, multi-wavelength data. In this paper, we present anoverview of Sherpa's features, whi
h in
lude: support for a wide variety of input and output data formats, in
ludingthe new Model Des
riptor List (MDL) format; a model language whi
h permits the 
onstru
tion of arbitrarily
omplex model expressions, in
luding ones representing instrument 
hara
teristi
s; a wide variety of �t statisti
s andmethods of optimization, model 
omparison, and parameter estimation; multi-dimensional visualization, provided byChIPS; and new intera
tive analysis 
apabilities provided by embedding the S{Lang interpreted s
ripting language.We 
on
lude by showing example Sherpa analysis sessions.Keywords: Chandra, CIAO, data analysis, �tting, modeling, Virtual Observatory1. INTRODUCTIONIn astronomi
al data analysis, one develops models of physi
al pro
esses in the spe
tral, spatial, and/or temporaldomains, then �ts these models to observed data. These data may be of arbitrary dimension, and/or they mayhave been 
olle
ted using an arbitrary number of teles
opes that observe in di�erent wavelength bands. Sherpa, themodeling and �tting appli
ation of the Chandra Intera
tive Analysis of Observations (CIAO) software pa
kage,1 isdesigned to ta
kle su
h 
omplex multi-dimensional, multi-wavelength analyses. Free of hard-wired instrument details,Sherpa is out�tted with a wide variety of models, �t statisti
s, and methods of optimization, model 
omparison, andparameter estimation, and it o�ers powerful embedded visualization, s
ripting, and data manipulation 
apabilities.It 
an thus be used to analyze energy- or wavelength-spa
e data from, e.g., ground-based teles
opes, ISO, Hubble,XMM, and the Chandra X-ray Observatory, as well as from next-generation proje
ts su
h as the Virtual Observatory.In this paper we present a basi
 overview of Sherpa. In x2, we des
ribe the appli
ation itself, while in x3 wedes
ribe Sherpa's 
apabilities using a typi
al Sherpa session as a framework, from reading in data to determining the1� errors on the best-�t model parameters. In x4 we provide brief examples of how one may use Sherpa. For moreinformation, the reader may 
onsult the on-line Sherpa manual.22. IMPLEMENTATION OF SHERPAThe authors have developed Sherpa using the obje
t-oriented C++ programming language.3 In obje
t-orientedprogramming, obje
ts en
apsulate related data and fun
tions; thus, 
lasses (from whi
h obje
ts are instantiated) 
anbe written that more 
losely model the problem domain. For a modeling and �tting appli
ation, 
lasses 
ontaining�tting methods, statisti
s, models, and data organize the 
ode in a way that more intuitively mirrors the 
on
eptsunderlying the �tting pro
ess.Sherpa is an intera
tive appli
ation, using a lex/ya

-based parser to interpret 
ommands. Sherpa a

epts inputvia the 
ommand-line interfa
e or ASCII s
ript �les.�Send 
orresponden
e to: (pfreeman,sdoe,asiemiginowska)�head-
fa.harvard.edu; phone 1 617 496-7824; fax 1 617 495-7356; Harvard-Smithsonian Center for Astrophysi
s, MS 81, 60 Garden St., Cambridge, MA, 02138. Copyright 2001 So
ietyof Photo-Opti
al Instrumentation Engineers.This paper was published in Astronomi
al Data Analysis, Jean-Lu
 Star
k, Fionn D. Murtagh, Editors, Pro
eedings of SPIEVol. 4477, p. 76, and is made available as an ele
troni
 preprint with permission of SPIE. One print or ele
troni
 
opy maybe made for personal use only. Systemati
 or multiple reprodu
tion, distribution to multiple lo
ations via ele
troni
 or othermeans, dupli
ation of any material in this paper for a fee or for 
ommer
ial purposes, or modi�
ation of the 
ontent of thepaper are prohibited.�Appli
ation developers may also use Sherpa's \wrapper" 
lass, whi
h provides an API for both C and C++ 
ode.



The CIAO pa
kage also 
ontains a number of other programs and libraries that enhan
e Sherpa's 
apabilities.Data I/O is provided by the CIAO Data Model library.4 The Data Model gives a higher-level, abstra
t view ofastronomi
al data �les and provides transparent a

ess to the most 
ommon astronomi
al �le formats (FITS, IRAFIMH, IRAF QPOE).y The Data Model provides a uniform interfa
e so that the appli
ation need no longer use I/Ofun
tions spe
i�
 to parti
ular �le formats. The Data Model also has a sophisti
ated �ltering and binning syntaxthat allows the extra
tion of sele
ted portions of data 
ontained in a �le.For all visualization needs, Sherpa uses ChIPS, the Chandra Imaging and Plotting System.5 As the name indi
ates,ChIPS provides an interfa
e to plotting and imaging appli
ations (
urrently SM,6 SAODS9,7 and SAOTNG 7). ChIPSis both a stand-alone, intera
tive appli
ation and a C++ library (whi
h is how it is used by Sherpa{it passes 
ommandsand data to ChIPS). Sherpa 
an a

ess ChIPS fun
tions through the ChIPS API, but it is also possible for ChIPS
ommands to be input dire
tly at the Sherpa 
ommand-line.As of CIAO 2.1, the S{Lang interpreted s
ripting language8 has been embedded in CIAO. Its features in
lude:� global and lo
al interpreted variables, and multidimensional arrays (up to seven dimensions);� bran
hing and looping, and programmability with user-de�ned fun
tions;� string and numeri
 data types, stru
tures, and a limited form of pointers;� built-in arithmeti
 and mathemati
al fun
tions, whi
h operate transparently on arrays; and� extensibility{the ability to 
reate new fun
tionality for CIAO appli
ations (e.g. GUIDE; see x4.3).S{Lang is a

essed through a supplementary library layer, dubbed Variables, Math, and Ma
ros (VARMM),9 whi
hgives the user additional 
apability to de�ne stru
tured variables dire
tly from disk �les, as well as enabling existingCIAO appli
ations to a

ess S{Lang variables and other features with a bare minimum of new development e�ort.3. SHERPA FUNCTIONALITYThe 
apabilities of Sherpa 
an be best des
ribed by following the steps of a typi
al analysis session. In su
h a session,the user would:� read in (sour
e and/or ba
kground) data (and set �lters, et
.);� build models that des
ribe these data (as well as the teles
ope/dete
tor 
ombination);� 
hoose a statisti
 that quanti�es how well these models des
ribe the data;� �t the models to the data, determining the minimum value of the 
hosen statisti
;� 
ompare best-�t results a
hieved with di�erent models to sele
t one best-�t model; and� estimate the errors for ea
h parameter of the best-�t model.Below, we dis
uss ea
h of these items in turn. We note that a typi
al session would also in
lude ChIPS visualization(of the sour
e data, or of the ba
kground �t, et
.); while we do not dis
uss it spe
i�
ally in this se
tion, we provideexamples of visualization in x4.3.1. Sherpa Data Input (and Output)Data input marks the beginning of a Sherpa analysis session. The data may be input from either a �le on disk or aninterpreted S{Lang variable. In Table 1, we list data types that may be input into Sherpa, while in Table 2 we list
urrently supported �le formats. (Instrument 
hara
teristi
s, su
h as the point-spread fun
tion, or PSF, may alsobe 
ontained in �les that are read in when an instrument model is spe
i�ed; see x3.2.1.)One only needs to read in sour
e data to start an analysis session; other data types (su
h as ba
kground) are notrequired. However, some types of data may be input automati
ally when sour
e data are read; for instan
e, a PHA�le 
an have 
olumns that spe
ify the statisti
al and systemati
 errors (STAT ERR and SYS ERR, respe
tively) and thedata grouping (GROUPING), and it 
an have a keyword (BACKFILE) spe
ifying the ba
kground dataset. Also, one 
anspe
ify statisti
al and systemati
 errors, �lters, and statisti
al weights via the 
ommand-line interfa
e. If statisti
alerrors are not input or spe
i�ed, they are estimated by Sherpa during �tting; see x3.3.An arbitrary number of datasets may be input into Sherpa, and arbitrary subsets of these data may be jointlyanalyzed. Sin
e 
urrent standard pro
essing of Chandra grating data in
ludes the extra
tion of ba
kground spe
trayASCII I/O is not provided by the Data Model but is provided elsewhere in CIAO library 
ode.



Table 1. Input data types.DATA Sour
e dataBACK Ba
kground data(B)ERRORS Sour
e or ba
kground errors(B)ERRORS SYSTEM Sour
e or ba
kground systemati
 errorsFILTER Spe
i�
ation of whi
h bins of a given dataset are to be analyzedWEIGHT Statisti
al weights for ea
h datumGROUPS Spe
i�
ation of how data are to be binnedTable 2. Supported �le types.ASCII ASCII dataFITSBIN FITS binary tableFITS FITS imageIMH IRAF IMH imagePHA Type I & II PHA dataQP IRAF QPOE imagefrom regions on either side of the sour
e extra
tion region, one may also spe
ify up to two ba
kground datasets persour
e dataset. These data may be �t simultaneously with the sour
e data (see x4.2), or they may be subtra
tedfrom the sour
e data on a 
hannel-by-
hannel basis prior to a �t:S0i = Si � �StS " PNj=1 Bi;jPNj=1 �Bj tBj # : (1)Si is the sour
e datum in bin i, Bi;j is the ba
kground datum in bin i of ba
kground set j, t is the observation time,and � is the \ba
ks
ale" (the BACKSCAL header keyword value in a PHA �le), typi
ally de�ned as the ratio of dataextra
tion area to total dete
tor area.At any time during an analysis session, quantities like the ba
kground-subtra
ted data, 
onvolved model ampli-tudes, or �t residuals may be output to �les using the WRITE 
ommand. (The �les may be saved in any of the formatslisted in Table 2.) A user may also save (and later restore) the state of a Sherpa analysis session using a ModelDes
riptor List (MDL). The MDL is a re
ord of all information relevant to a Sherpa �tting session: the names of allinput data �les and asso
iated �lters; all de�ned sour
e and instrument models, with model parameter settings; the
hoi
es of optimization method and �t statisti
; and the 
uxes and identi�
ation of emission/absorption lines thatthe user may have identi�ed (see x4.3). The MDL may be either saved to disk or instantiated as an S{Lang variable.3.2. Building Model ExpressionsOn
e sour
e and/or ba
kground data are input, the next step is to 
reate model expressions re
e
ting one's knowledgeof the physi
al pro
esses whi
h gave rise to those data. (The user 
an also build model expressions that represent theobserving instruments. See x3.2.1.) Sherpa 
urrently provides nearly 40 of its own one- and two-dimensional modelsand 90 one-dimensional XSPEC 10 models that may be arbitrarily 
ombined to build 
omplex 
omposite models, aswe show below. Note that a user 
an also de�ne a modelz and 
ompile it into the libas
fitUser.so shared-obje
tlibrary,x where it 
an be a

essed by Sherpa.zThe usermodel. One 
an also de�ne an optimization method (usermethod) and statisti
 (userstatisti
).xIn CIAO 2.2, Sherpa will also support user-model de�nition via S{Lang s
ripts.



Sherpa model language. The Sherpa model language resolves ambiguity by allowing the user to give a uniquename or alias to ea
h instan
e of a model. For example, if two datasets are entered, and ea
h is to be �t with aGaussian model, but with di�erent parameters, one might type:{sherpa> gauss1d[g1℄sherpa> gauss1d[g2℄sherpa> sour
e 1 = g1sherpa> sour
e 2 = g2whereas if ea
h is to be �t with the same Gaussian model, one might type:sherpa> gauss1d[g1℄sherpa> sour
e 1:2 = g1Linking parameters to other parameters or to models. One 
an link an individual model parameter toanother model parameter, so that their values are 
orrelated. For instan
e, if a parti
ular atomi
 line is observed bytwo di�erent dete
tors, it 
ould be modeled with two Gaussian fun
tions whose 
entroids are linked:sherpa> sour
e 1 = gauss1d[g1℄sherpa> sour
e 2 = gauss1d[g2℄sherpa> g1.pos => g2.pos(Note that simple arithmeti
 relations are also possible, e.g. g1.ampl => 2*g2.ampl.) At this point, g1.pos is nolonger a free parameter of the �t. It 
an be made free again with the 
ommand UNLINK g1.pos.One 
an also link an individual model parameter to a model, to des
ribe how a parameter's value will vary asa fun
tion of position in parameter spa
e. For instan
e, one 
an model emission from an a

retion disk using abla
kbody fun
tion whose temperature is a fun
tion of radius:sherpa> sour
e = bbsherpa> Temperature = POLYsherpa> bb.kT => TemperatureNesting model expressions. A model may be nested within another, i.e. one may spe
ify a model expression ofthe form g(f(x)). In this example, the input data axis is transformed to log-spa
e using Sherpa's log model, and abla
kbody model is evaluated in that spa
e:sherpa> logenergy = shlogsherpa> sour
e = bb{logenergy}Multi-dimensional model expressions. One 
an spe
ify 
ompletely di�erent models that are to be evaluatedalong di�erent axes of a multi-dimensional dataset, as in this example, where two-dimensional spe
tral-radius dataare modeled with a 
ombination of Lorentzian and power-law models:sherpa> lorentz[Spatial℄sherpa> pow[Spe
℄sherpa> sour
e = Spatial{x1}*Spe
{x2}x1 and x2 represent the �rst and se
ond axes of the input image, respe
tively.{The relationship between gauss1d, and g1 and g2 above is similar to the 
lass-obje
t relationship in obje
t-orientedprogramming: gauss1d is the 
lass, spe
ifying a Gaussian fun
tion with parameters position, amplitude, and full-width athalf-maximum, while g1 and g2 are instantiated obje
ts of the 
lass, ea
h 
ontaining a spe
i�
 set of parameter values.



3.2.1. Instrument modelsInstrument models are used to quantify 
hara
teristi
s, su
h as e�e
tive area, a dete
tor's energy response, or amirror's point-spread fun
tion. They provide a mapping from photon spa
e (where sour
e and ba
kground modelsare evaluated) to 
ounts spa
e (where �t statisti
s are 
omputed). The instrument model 
lass is the key elementwhi
h makes Sherpa a mission-independent appli
ation, permitting analysis of data observed by any teles
ope,regardless of whether it is ground-based or spa
e-based.Currently, Sherpa de�nes three instrument model 
lasses: (1) RSP, in whi
h an evaluated one-dimensional modelis multiplied by an an
illary response (ARF, i.e. an e�e
tive area) on a bin-by-bin basis, then folded through aresponse matrix (RMF); (2) PSFFromFile, in whi
h the evaluated one- or two-dimensional model is 
onvolved witha numeri
 kernel; and (3) PSFFromTCD, in whi
h the evaluated one- or two-dimensional model is 
onvolved withan analyti
 kernel (e.g. Gaussian) de�ned within CIAO's Transformation, Convolution, and De
onvolution (TCD)library. Future versions of Sherpa may in
lude new 
lasses to treat, e.g., two-dimensional exposure maps.3.3. Statisti
s3.3.1. Statisti
s based on the �2 distributionThe �2 statisti
 is appropriate for the analysis of Gaussian-distributed data. It is de�ned as�2 � Xi (Di �Mi)2�2i :where Di is the (sour
e or ba
kground) data in bin i, Mi is the (
onvolved sour
e or ba
kground) model predi
tedamplitude in bin i, and �i is the estimated error for the ith datum (the square root of the varian
e of the distributionfrom whi
h that datum had been sampled). As noted in x3.1, one may spe
ify the errors via a �le or the 
ommand-line;if this is done, the �2 statisti
 is used as shown above. Otherwise, the data are assumed to be Poisson-distributed,kwith the errors for ea
h datum estimated during analysis. The large array of error estimators that Sherpa providesis one of its key features; these are listed in Table 3. Note that the entries in this table are only 
orre
t if theba
kground data have not been subtra
ted from the sour
e data; otherwise errors are propagated in the standardmanner (�2S0 = �2S + �2B). Also note that error estimates based on model amplitudes are inappropriate to use in theanalysis of ba
kground-subtra
ted data, as they generally underestimate the true error.Using a �2-based statisti
 to analyze 
ounts data is generally only valid in the Gaussian (high-
ounts) limit (>� 5
ounts in ea
h bin). This is be
ause the approximations that must be made to derive the �2 statisti
 from Poissonlog-likelihood logL break down otherwise. The CHI GEHRELS11 and CHI PRIMINI12 statisti
s are designed to workwith low-
ount data; note that the former it is not generally sampled from the �2 distribution and thus the derivedbest-�t statisti
 may appear to be \too good" (�2G=N � 1, where N is the number of degrees of freedom in the �t),in the low-
ounts limit.3.3.2. Statisti
s based on the Poisson likelihoodThe Poisson likelihood fun
tion is L = Yi MDiiDi! exp(�Mi) : (2)Sherpa features two statisti
s based on this fun
tion: CASH and BAYES.The version of the CASH statisti
13 used by Sherpa is derived from L by (1) taking its logarithm, (2) dropping thefa
torial term (whi
h remains 
onstant during �ts to given datasets), (3) multiplying by two, and (4) 
hanging thesign (so that the statisti
 may be minimized, like �2):C � 2Xi [Mi �Di logMi℄ ; (3)In the high-
ounts limit, �C � ��2, so that in prin
iple one 
an use �C instead of ��2 in model 
omparison tests(see x3.5).kThe Poisson distribution tends asymptoti
ally towards a Gaussian distribution as its expe
tation value approa
hes in�nity.



Table 3. Statisti
s based on the �2 distribution.Statisti
 Varian
e �2iCHI DVAR DiCHI GEHRELS (Sherpa default) �1 +pDi + 0:75�2CHI MVAR MiCHI PARENT (PNi=1Di)=NCHI PRIMINI Mi from previous best-�tThe BAYES statisti
14 is based on Bayesian statisti
al methodology�� and is appropriate to use when a ba
kgroundis input and the rate of ba
kground a

umulation may be taken as the same in both the ba
kground and sour
eextra
tion regions. This statisti
 takes into a

ount un
ertainty in the (impli
itly de�ned) ba
kground amplitudesvia marginalization: B � � p(~xS jD) = �Xi ZxB;i dxB;ip(~xS ; xB;ijD) ;where ~xS represents the set of sour
e model parameters and xB;i is the ba
kground amplitude in the ith bin. (Notethat the above equation has an analyti
 solution that we do not reprodu
e here.)Note that be
ause the CASH and BAYES statisti
s are based on the likelihood fun
tion, they should not be appliedto ba
kground-subtra
ted data. Also, there is no \goodness-of-�t" measure asso
iated with CASH and BAYES, as thereis of �2-based statisti
s. Su
h a measure 
an, in prin
iple, be 
omputed by performing Monte Carlo simulations: onewould repeatedly sample new datasets from the best-�t model, �t them, and note where the observed statisti
 lieswithin the derived distribution of statisti
s.3.4. OptimizationOptimization is the a
t of minimizing �2 or �logL by varying the thawed parameters of the de�ned model. Sherpaprovides a number of optimization methods, whi
h 
an be 
lassi�ed in two broad 
ategories: those whi
h �nd a lo
alminimum of the statisti
al surfa
e in parameter spa
e by moving along the lo
al gradient of that surfa
e, and thosewhi
h examine large (hyper-)volumes of parameter spa
e in a sear
h for the global minimum (see Table 4yy).Below, we dis
uss the three optimization methods appropriate for �nding lo
al minima: POWELL, SIMPLEX, andLEVENBERG-MARQUARDT. Users should be a
quainted with the (dis)advantages of ea
h so as to make the best use ofthem. (For more information about Sherpa's other optimization methods, 
onsult the Sherpa manual2 and, e.g.,Press et al. 1992.16 )POWELL, a dire
tion-set method in whi
h the 
hosen statisti
 is minimized by varying ea
h member of an (initiallyorthogonal) set of parameter-spa
e ve
tors in turn, is Sherpa's default optimizer. Its advantages in
lude the fa
t thatno gradient 
al
ulations are required, and that it is a robust method, 
apable of �nding minima even on 
omplexstatisti
al surfa
es. (Also, unlike LEVENBERG-MARQUARDT, is 
an be used e�e
tively with likelihood-based statisti
s.)Its primary disadvantage is that it is relatively slow.In SIMPLEX optimization, the �t statisti
 is 
al
ulated at the N + 1 verti
es of a simplex in a N -dimensionalparameter spa
e, with the verti
es being moved until the lo
al minimum is bra
keted. Its advantages in
lude the fa
tthat no gradient 
al
ulations are required, it 
an �nd minima of 
omplex statisti
al surfa
es, and it requires fewermodel evaluations than POWELL. However, it is not as robust as POWELL. The SIMPLEX method is best-used when onestarts the optimization 
lose to the lo
al minimum; for instan
e, it is a good optimizer to use in parameter estimation(see x3.6).��Spa
e does not permit us to provide details about Bayesian statisti
al methodology, whi
h may be less familiar to somereaders than the standard \frequentist" statisti
al paradigm. For an introdu
tion to Bayesian statisti
s that is geared towardsastrophysi
ists, see Loredo (1992).14yyAlong with these Sherpa methods, a future release of CIAO will feature a stand-alone �tting appli
ation for low-
ountsdata whi
h uses Bayesian posterior sampling. See van Dyk et al. (2001).15



Table 4. Optimization methods in Sherpa.Lo
al Minimum POWELL, SIMPLEX, LEVENBERG-MARQUARDTGlobal Minimum GRID(-POWELL), MONTE(-POWELL), SIMULATED ANNEALINGIn LEVENBERG-MARQUARDT optimization, the lo
al minimum is approa
hed by taking steps in parameter spa
ewhose magnitudes Æ~x are 
omputed by solving the set of linear equationsnXj=1 �ij(1 + �ij)Æxj = �i ;where �ij = nXk=1 1�2k ��M(~x)�xi �M(~x)�xj � and �i = � 12 ��2�xi ;and �ij is a matrix with non-zero diagonal elements whose magnitudes are inversely proportional to Æ~x. The primaryadvantage of LEVENBERG-MARQUARDT optimization is speed, while its disadvantages in
lude the fa
t that a gradient
omputation is required, that it is appropriate for use with �2-based statisti
s only, and that it is less robust whenapplied to optimization on a 
omplex statisti
al surfa
e. (To 
ir
umvent the third issue, we have introdu
ed theoption that the optimization method may be swit
hed from LEVENBERG-MARQUARDT to SIMPLEX 
lose to the minimum,where the disadvantages of LEVENBERG-MARQUARDT be
ome more readily apparent.)3.5. Model ComparisonOften, a user will �t more than one parametrizedmodel to a given dataset, and will wish to 
ompare the best-�t resultsof ea
h. For instan
e, one may �t two 
ontinuum models to data, and need to de
ide whether the improvement inthe �t statisti
 that is observed when using the more 
omplex model is attributable to 
han
e. To make this de
ision,one uses a model 
omparison test to yield either: (1) the frequentist test signi�
an
e, �, whi
h is the probabilityof sele
ting the alternative (more 
omplex) model M1 when in fa
t the null hypothesis M0 is 
orre
t; or (2) theBayesian odds, the ratio of model posterior probabilities for M1 and M0. If the prior probability distribution for amodel's parameter values is 
onstant, then its posterior probability is proportional to the integral of the likelihoodfun
tion L over parameter spa
e.The model 
omparison test that is 
urrently available to the Sherpa user is the �2 Goodness-of-Fit (GOF) test,an alternative-free test. The next version of Sherpa will also 
ontain the Maximum Likelihood Ratio (MLR) testand the F -test. Methods of model 
omparison that may be in
luded in future versions of Sherpa in
lude: usingsimulations to determine model 
omparison test statisti
s numeri
ally when the 
onditions for using an analyti
 testare not ful�lled; 
omputing the Bayesian odds using the Lapla
e approximation17; and 
omputing the Bayesian oddsvia numeri
al integration. We note that these new te
hniques, in addition to assisting the 
omparison of models,would also be useful for parameter estimation.3.6. Parameter EstimationOn
e one has sele
ted a best-�t model, the next question is: what are the errors on the model parameters, i.e. what arethe 
on�den
e intervals asso
iated with ea
h model parameter? In general, a frequentist statisti
ian 
an determinepossible intervals by repeatedly simulating data from the best-�t model, �tting these data, and determining thedistribution of best-�t values for ea
h model parameter.zz The 
entral 68% of ea
h distribution 
an then be deemedthe 1� 
on�den
e interval. However, simulations are 
omputationally expensive, and if: (1) the �2 or logL surfa
e isapproximately shaped like a multi-dimensional paraboloid (i.e. 
ontours of 
onstant �2 or logL appear ellipsoidal intwo-dimensional plots), and (2) the best-�t point is suÆ
iently far from parameter spa
e boundaries, then 
on�den
eintervals may be estimated by examining the statisti
al surfa
e itself.zzA Bayesian would adapt methods mentioned in the previous se
tion{using numeri
al integration or the Lapla
e approx-imation, et
.{to the problem of parameter estimation. Thus in the remainder of this subse
tion, we only dis
uss frequentistparameter estimation methods.



Figure 1. Best-�t of two polynomial fun
tions to data of the narrow-line Seyfert 1 galaxy RE J1034+396, observedby the William Hers
hel 4.2m Teles
ope, HST, and BeppoSAX.Sherpa 
urrently features three parameter estimation methods appropriate for use when the statisti
al surfa
e is\well-behaved": UNCERTAINTY, PROJECTION, and COVARIANCE. (In addition, one 
an make one- or two-dimensionalplots showing the �t statisti
 value as a fun
tion of parameter value[s℄.) With UNCERTAINTY, the error for a parti
ularthawed parameter is estimated by varying its value (while holding all other parameter values �xed to their best-�tvalues) until the �t statisti
 in
reases by a preset amount from its minimum value (e.g. ��2 = 1 for 1�). PROJECTIONis similar to UNCERTAINTY, ex
ept that the values of all other parameters are allowed to 
oat to new best-�t values.With COVARIANCE, errors are estimated by 
al
ulating the 
ovarian
e matrix, the inverse of the matrix of statisti
alsurfa
e se
ond derivatives at the best-�t point. Ea
h of these methods has distin
t (dis)advantages: for example,UNCERTAINTY, while fast, will generally underestimate an interval's size if the parameter is 
orrelated with otherparameters; and PROJECTION provides a means to visualize the surfa
e and 
an be used even if the model parametersare 
orrelated, but is in the stri
test statisti
al sense no more a

urate than the mu
h faster COVARIANCE method(whi
h is itself not useful for visualization).4. EXAMPLES OF SHERPA ANALYSESIn this se
tion, we present four examples of Sherpa analyses. We note that spa
e limitations prevent us from showingall but a few 
ommands that are used in these analyses; for full s
ripts, plus s
ripts showing other analyses, please
onsult the Sherpa analysis threads.184.1. Multi-wavelength analysis of spe
traIn this example, we analyze 
ux data (log[�F� ℄) of RE J1034+396,19 a low-redshift, narrow-line Seyfert 1 galaxy.The data were 
olle
ted by the William Hers
hel 4.2m Teles
ope, HST, and BeppoSAX. Be
ause the data are notsampled from a Poisson distribution, the errors must be input or spe
i�ed; here, we assume that the error on the
ux is 1%:sherpa> errors = 0.01*dataThe observed \blue bump" is modeled in Sherpa with two polynomial fun
tions; the �nal �t is shown in Figure 1.



Figure 2. Top: Best-�t of a power-law times gala
ti
 absorption model to the sour
e spe
trum of supernova remnantG21.5{0.9. Bottom: Best-�t of a di�erent power-law times gala
ti
 absorption model �t to a ba
kground spe
trumextra
ted near G21.5{0.9.4.2. Simultaneous analysis of sour
e and ba
kground dataIn this example, we analyze Chandra sour
e and ba
kground spe
tra of the supernova remnant G21.5{0.9. In ouranalysis, we assume a power-law times gala
ti
 absorption model, with di�erent model parameters for the sour
e andba
kground:sherpa> sour
e = xswabs[sabs℄*pow[sp℄ # uses the XSPEC wabs absorption modelsherpa> bg = xswabs[babs℄*pow[bp℄We model the sour
e and ba
kground data separately, rather than subtra
t the ba
kground data from the sour
edata, be
ause the low ba
kground 
ount-rate. This low 
ount-rate also motivates the use of the Cash statisti
:sherpa> statisti
 
ashThe �nal �t is shown below, and in Figure 2.sherpa> fitpowll: v1.2powll: 
onverged to minimum = -7.01375E+03 at iteration = 28powll: final fun
tion value = -7.01375E+03sabs.nH 2.38646 10^22/
m^2sp.gamma 1.50622sp.ampl 0.00201939babs.nH 0.629181 10^22/
m^2bp.gamma 1.0345bp.ampl 0.000101356



4.3. Analysis of Chandra grating dataThis example shows the analysis of Chandra grating spe
tra of the bright X-ray sour
e Capella, whi
h have beenstored in one Type II PHA �le. We 
on
entrate on the �rst-order High Energy Grating (HEG) and Medium EnergyGrating (MEG) spe
tra, whi
h are input into Sherpa as datasets 3 (HEG -1), 4 (HEG +1), 9 (MEG -1), and 10(MEG +1). Be
ause the input Type II PHA data �le 
ontains 
olumns de�ning the wavelengths for ea
h bin, theanalysis is assumed to be in wavelength-spa
e. We examine only data between 6.7 and 6.8 �A:sherpa> noti
e allsets wave 6.7:6.8We then �t a normalized Gaussian fun
tion to the observed line:sherpa> sour
e 3,4 = ngauss[hg1℄ + 
onst[
o℄sherpa> sour
e 9,10 = ngauss[mg1℄ + 
owhere the 
onstant fun
tion represents the ba
kground. Be
ause the line 
ux will be same in a 
ontemporaneousMEG/HEG observation, the amplitudes are linked:sherpa> mg1.ampl => hg1.amplOther parameters are not linked be
ause of un
ertainties in 
alibration. Note that we use only grating ARFs inthis analysis; we 
ould also model the line pro�le with a delta fun
tion and use both grating ARFs and RMFs.After the �t (Figure 3), we identify the most likely transition whi
h gives rise to the observed line using GUIDE, aS{Lang-based extension to Sherpa whi
h a
ts as an interfa
e to the Atomi
 Plasma Emission Database (APED):20sherpa> import("guide")sherpa> identify(6.40)Found 9 lines.Lambda -- Ion UpperLev LowerLev Emis(ph 
m^3/s) � Peak Temp...6.7403 -- Si XIII 2 -> 1, 3.548e-17 � logT = 7.00...4.4. Analysis of two-dimensional dataIn this last example, we demonstrate how one 
an model the spatial distribution of hot gas in the X-ray 
luster MS2137.3-2353, observed by Chandra. After the data are entered, we display them using SAODS9 ; we then load thethree point sour
e regions into SAODS9 that we will use to intera
tively �lter the data:sherpa> ignore imageOne 
ould also use the regions to �lter the data dire
tly at the Sherpa 
ommand line:sherpa> ignore filter ellipse(300.14946,299.8716,20.128119,16.76774,94.648547) + \ellipse(431.96938,371.1944, 7.251325, 4.77655,11.890284) + \ellipse(212.26666,145.8972, 4.744431, 4.33702,71.631001)This 
ommand �lters out the data within the de�ned regions. The remaining data, whi
h represent only the intra-
luster gas, are then �t with a two-dimensional beta model pro�le. See Figure 4.ACKNOWLEDGMENTSWe would like to thank Mark Birkinshaw, William Joye, Malin Ljungberg, and Mi
hael Noble for past and present
ontributions to Sherpa's development. We would also like to thank Holly Jessop for her tireless work maintaining theSherpa manuals and threads. The Sherpa proje
t is supported by the Chandra X-ray Center under NASA 
ontra
tNAS8-39073.
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Figure 3. Best-�t of a normalized Gaussian fun
tion to an emission line (Si XIII 2!1 at 6.7403 �A) observed in four�rst-order HEG and MEG Chandra grating spe
tra of Capella.

Figure 4. Top Left: Chandra ACIS-S data of X-ray 
luster MS 2137.3-2353, with SAODS9 sour
e regions superim-posed. Top Right: Best-�t of a two-dimensional beta model to the �ltered data. Bottom Left: Residuals (in units of�) of the best �t. Bottom Right: The applied �lter; the data within the ovals were ex
luded from the �t.



REFERENCES1. http://as
.harvard.edu/
iao/index.html2. http://as
.harvard.edu/
iao/download/do
/sherpa html manual/index.html3. S. Doe, M. Ljungberg, A. Siemiginowska, & W. Joye, \Fitting and Modeling of AXAF Data with the ASCFitting Appli
ation," in Astronomi
al Data Analysis Software and Systems VII, R. Albre
ht, R. N. Hook, &H. A. Bushouse, ed., pp. 157{160, ASP, San Fran
is
o, 1998.4. J. M
Dowell, these pro
eedings; also http://as
.harvard.edu/
iao/ahelp/dm.html5. http://as
.harvard.edu/
iao/download/do
/
hips html manual/index.html6. R. Lupton & P. Monger, http://www.astro.prin
eton.edu/~rhl/sm/7. W. Joye & E. Mandel, http://hea-www.harvard.edu/RD/index.html8. J. Davis, http://www.s-lang.org/9. S. Doe, M. Noble, & R. Smith, \Intera
tive Analysis and S
ripting in CIAO 2.0," in Astronomi
al Data AnalysisSoftware and Systems X, F. R. Harnden, F. A. Primini, & H. E. Payne, ed., in press, ASP, San Fran
is
o, 2001.10. K. A. Arnaud, \XSPEC: The First Ten Years," in Astronomi
al Data Analysis Software and Systems V, G. H. Ja-
oby & J. Barnes, ed., pp. 17{20, ASP, San Fran
is
o, 1996.11. N. Gehrels, \Con�den
e limits for small numbers of events in astrophysi
al data," Ap. J., 303, pp. 336{346,1986.12. K. Kearns, F. Primini, & D. Alexander, \Bias-Free Parameter Estimation with Few Counts, by Iterative Chi-Squared Minimization," in Astronomi
al Data Analysis Software and Systems IV, R. A. Shaw, H. E. Payne, &J. J. E. Hayes, ed., pp. 331{334, ASP, San Fran
is
o, 1995.13. W. Cash, \Parameter estimation in astronomy through appli
ation of the likelihood ratio," Ap. J., 228, pp. 939{947, 1979.14. T. J. Loredo, \The Promise of Bayesian Inferen
e for Astrophysi
s," in Statisti
al Challenges in Modern As-tronomy, E. D. Feigelson & G. J. Babu, ed., pp. 275{297, Springer-Verlag, New York, 1992.15. D. A. van Dyk, A. Connors, V. L. Kashyap, & A. Siemiginowska, \Analysis of Energy Spe
tra with Low PhotonCounts via Bayesian Posterior Simulation," Ap. J., 548, pp. 224{243, 2001.16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, & B. P. Flannery, Numeri
al Re
ipes, Cambridge UniversityPress, Cambridge, 1992.17. T. J. Loredo & D. Q. Lamb, \Establishing the existen
e of lines in gamma-ray bursts," in Gamma-ray Bursts:Observations, Analyses, and Theories, C. Ho, R. Epstein, & E. Fenimore, ed., pp. 414{415, Cambridge UniversityPress, Cambridge, 1992.18. http://as
.harvard.edu/
iao/do
uments threads.html19. E. M. Pu
hnarewi
z, et al., \Constraining the Bla
k Hole Mass and A

retion Rate in the Narrow-Line Seyfert1 Galaxy RE J1034+396," Ap. J., 550, pp. 644-654, 2001.20. R. K. Smith, N. S. Bri
khouse, D. A. Liedahl, & J. C. Raymond, \CollisionalPlasmaModels with APEC/APED:Emission Line Diagnosti
s of Hydrogen-like and Helium-like Ions," Ap. J. Lett., in press, 2001.


