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ABSTRACT

The Advanced X-ray Astrophysics Facility (AXAF) X-ray mirrors underwent thorough calibration using the X-
Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC) in Huntsville, AL from late 1996
to early 1997. The X-ray calibration made novel use of the X-ray continuum from a conventional electron-impact
source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved
advantageous in calibrating the effective area of AXAF’s High-Resolution Mirror Assembly (HRMA) for the entire
AXAF energy band. The measurements were made by comparing the spectrum detected by a SSD at the focal plane
with the spectrum detected by a beam normalization SSD. The HRMA effective area was calibrated by comparing
the measurements with the HRMA raytrace model. The HRMA on-orbit performance predictions are made using
the calibration results.
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1. INTRODUCTION

The launch of the most powerful X-ray telescope ever built - NASA’s Advanced X-ray Astrophysics Facility (AXAF)
—is a major milestone in high energy astrophysics and the world of science. It will serve as an important astrophysical
research facility to bridge into the 21st Century. AXAF is the X-ray component of NASA’s Great Observatories.
It represents the most advanced science and technology in the world today. It will follow Hubble Space Telescope
and Compton Gamma Ray Observatory’s success to open a new window to the Universe. AXAF has unprecedented
capabilities of high resolution imaging and spectroscopy over the X-ray band of 0.1 keV — 10 keV.

To ensure a successful scientific mission, an extensive ground calibration for the AXAF mirror and science
instruments was carried out at NASA’s Marshall Space Flight Center from September 1996 through May 1997. It
was determined that the AXAF effective area should be calibrated to a precision that no X-ray telescopes have ever
achieved before — 1%. This will enable AXAF to provide unprecedented precision to measure the flux from X-ray
sources.

During the calibration, the HRMA on-axis effective area was measured in two different ways in terms of the X-ray
source characteristics: the discrete line measurements and the carbon-continuum (C-continuum) measurements. The
former uses characteristic X-ray lines generated by an Electron Impact Point Source (EIPS) with various anodes. The
latter uses continuum X-ray radiation generated by EIPS with a carbon anode at 15 kV and using a beryllium (Be)
filter to attenuate the lowest energies including the C-Ka line (0.277 keV). A preliminary result of this measurement
was reported in SPIE ’98."

For the X-ray line measurements, both Flow Proportional Counter (FPC) and Solid State Detector (SSD) were
used. For the FPC, 4 energy lines were used for four individual shells effective area measurements, and 3 energy

lines were used for the HRMA (all four shells open) effective area measurements. Several other energy lines were
used for the HRMA or MEG (Shells 1 and 3 open) or HEG (Shells 4 and 6 open) configurations and with 1 mm and
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Table 1. HRMA On-axis Effective Area Measurenents

Source: C-continuum Detector: SSD
TRW ID Run ID | Date | Shell | Aper (um) | Int (sec) ||
E-IXS—-MC-15.001 | 110539 | 970130 1 2000 1000
E-IXS—-MC-15.002 | 110540 | 970130 3 2000 1000
E—IXS—MC-—15.003 | 110541 | 970130 4 2000 1000
E—IXS—MC-—15.004 | 110542 | 970130 6 2000 1000

0.5 mm apertures only. For the SSD, 3 energy lines were used for the HRMA. Four energy lines were used for the
MEG and HEG configurations and with 0.5 mm aperture only. No SSD measurements were made for the effective
area of individual shells.

For the continuum measurements, only SSD was used, and only the effective area of each individual shell were
measured. The effective area was measured for each individual mirror shell by comparing the spectrum detected
by SSX (SSD at the HRMA focal plane) with the spectrum detected simultaneously by SS5 (SSD in Building 500
of the XRCF, to one side of the X-ray beam). The continuum measurements have the advantage of providing the
effective area data for nearly the entire AXAF energy band, but the data analysis and results evaluation need careful
attention. Factors such as SSD response, pileup correction, energy scale, deadtime correction, quantum efficiency,
background, icing effect, etc., need to be carefully evaluated.

This paper discusses the data analysis and HRMA effective area measured using the C-continuum source and
solid state detectors. The results are compared with the X-ray line measurements and with the HRMA raytracing
models. The comparison are used to make an on-orbit HRMA effective area prediction.

2. SSD C-CONTINUUM EFFECTIVE AREA MEASUREMENTS

The effective area measurements with the C-continuum Source were made with two nearly identical high-purity-
germanium solid state detectors: one (SS5) is a beam-normalization-detector (BND) located at 38.199 meters from
the source in Building 500 of the XRCF, another one (SSX) is the focal plane detector located at the HRMA focus,
537.778 meters from the source. An aperture wheel was mounted in front of each SSD. The HRMA effective area
was measured with a 2 mm diameter aperture in front of the SS5 and apertures with various sizes in front of the
SSX.

The on-axis effective area measurements with the C-continuum source and SSD detectors were made on 970113
(Date notation for 13 Jan 1997) with various apertures on SSX and 300-second integrations, and on 970130 with only
the 2 mm aperture on SSX and 1000-second integrations. The off-axis effective area measurements with C-continuum
were also made on 970131 with various apertures on SSX, 300-second integrations, and off-axis angles of 5, 10’ 15,
20, 25', and 30'.

This paper focuses on the on-axis effective area measurements made on 970130. They have the TRW IDs E-
IXS-MC-15.001,2,3,4 (Run ID: 110539, 110540, 110541, 110542) and the longest integration time and the largest
apertures used for this kind of measurement. We use this set of data to demonstrate the data reduction and to make
the HRMA effective area predictions. All other sets of data can be processed the same way. Table 1 lists this set
of measurements. Figure 1 shows the SSX and SS5 spectra of these four measurements. The profiles show the C-
continuum spectra with several spectral peaks on top. The largest Gaussian-like peak at around channels 2400-2500
is the injected pulser spectrum to be used for the pileup and deadtime corrections (see §3 and §6). Other peaks are
characteristic X-ray lines due to contaminations to the carbon anode. These peaks will be used to determine the
energy scale (see §5).

3. PILEUP CORRECTION

Before analyzing the SSD spectra, the first thing to do is to make the pileup correction. Pileups are when more than
one photon enter the detector within a small time window (a few usec). Instead of recording each photon event, the



detector registers only one event with the summed energy of all photons. The pileup can also occur for a real photon
with a pulser event. The SSD has pileup rejection electronics to reduce the pileup. However, the rejection does not
work well if one of the photons has energy below 2 keV, corresponding to a pre-amplifier output signal of 4 mV. Thus
each spectrum needs to be corrected for pileups of any photon with a low energy (< 2 keV) photon. Since three or
more photon pileups are extremely rare events and their effect is negligible, we only consider two photon pileups.

We use the SSD pulser spectra to establish an empirical pileup model. As shown in the SSX pulser spectra for
shell 1 and 3 (see Figure 1), the pulser pileups are clearly shown to the right of the pulser peak. In the SSX pulser
spectra for shell 4 and 6, the pulser pileups are mixed with the continuum pileups to the right of the pulser peak.
In the SS5 pulser spectra, the continuum dominates the right side of the pulser peak; the pileup effects are very
small since they are proportional to the counting rate. The total continuum counting rates in SS5 are 1-2 orders of
magnitude lower than that of SSX. Therefore we use the SSX pulser spectra for shell 1 and 3, where the pulser pileup
effects are clear and not mixed with the continuum pileups, to establish the model for the pileup correction. We
first divide the pulser pileup region into four bands with 100 channels per band. Since 2 keV &~ 400 channels, counts
in these regions are pileups of low energy photons (< 2 keV) with the pulser. Since the pileups are proportional
to counting rate of photons < 2 keV, we define a pileup rate as the pulser pileup fraction (pulser pileup counts
divided by the total pulser counts) divided by the counting rate within channels 0-400. Both SSX spectra give,
as it should be, about the same results: for the four 100-channel windows after the pulser, the pileup rates are
1.2x107% sec/count in channels 1-100, 1.0x10~ ¢ sec/count in channels 101-200, 0.7x10~% sec/count in channels
201-300, and 0.3x 10~ ¢ sec/count in channels 301-400. Notice that here the unit for pileup rate is ”second/count”.
When calculating the pileup fraction, we need to multiply these pileup rates by the counting rate within channels
0-400. For example, for SSX spectrum 110539, CR(0-400) = 4448 counts/second, pileup fractions are 0.005337,
0.004448, 0.003114, 0.001334 in the four windows; for SSX spectrum 110542, CR(0-400) = 1415 counts/second,
pileup fractions are 0.001698, 0.001415, 0.000990, 0.000424. Meantime, for all the SS5 spectra, CR(0-400) = 100, so
the pileup fractions are 0.000120, 0.000100, 0.000070, 0.000030, which are negligible.

In each channel of the raw spectra, there are real events at that energy plus some pileup events which come from
lower channels. Meanwhile, some of the real events at that energy were piled up to higher channels following the
above empirical model. To make the pileup correction, we need to subtract pileup fractions from each channel and
put them back where they belong, and remember each pileup photon came from two lower energy photons. These
were done as follows: first multiply the CR(0-400) by the pileup rates given above to obtain the pileup fractions for
that spectrum; for each channel N, we add the pileup fractions of channel N back to channel N, subtract one percent
of pileup fractions of channel N from each channel N + X (X = 1-400), and also add the same number to channel
X; then just step along for the entire spectrum.

Figure 2 shows the SSX pileup corrections for the four spectra. In the top panel of each quadrant plot, the dots
are the raw data, the solid line show the pileup corrected data. It is seen that when the spectra have sharp declines,
the pileup corrections make the spectra even lower. The bottom panels show the ratio of the pileup corrected data
vs. the raw data. The dashed vertical lines in the top panels indicate the position of six selected X-ray characteristic
lines to be used to determine the energy scale of the spectra (see §5 and §11).

4. SSD FLAT FIELD TEST

In order to obtain the effective area by dividing the spectra of SSX and SS5, we need to know the relative Quantum
Efficiency (QE) of the two SSDs as a function of energy. The SSD QE was measured as part of the HRMA
calibration at both the XRCF and BESSY (electron storage ring in Berlin, Germany). This section discusses the
SSD QE measurement made at the XRCF, i.e. the SSD C-continuum flat field test.

The C-continuum flat field test was done in June 1997, when the HRMA had been removed from the testing
chamber and shipped to TRW. The two SSDs were swapped, SSX was placed at the SS5 location in building 500 and
SS5 was placed at the focal plane. If the X-ray beam were uniform (this is not exactly the case — see §7), the X-ray
flux at the two SSDs should be proportional to the inverse square of their distance to the source. The distance from
the source to SSX was 38.199 m and to SS5 was 537.778 m. The 2 mm aperture was used for the SSX and 5 mm
aperture was used for the SS5 for the flat field test.



Figure 3 shows the spectra, with counting rate as a function of spectral channel, obtained with the two SSDs. 2

There are several spectral peaks atop the continuum. The largest peak to the right of each spectrum is the pulser
peak, which is used to estimate the pileup correction, as discussed in the previous section, and to calculate the
deadtime correction (see §6). Other peaks are characteristic X-ray lines due to contaminations to the carbon anode
(also seen in Figure 1). As the counting rates for the flat field test were very low (the SSX counting rate for the flat
field test was about the same as the SS5 counting rate during the effective area measurements, see previous Section.
The SS5 counting rate was 200 times lower than that of the SSX during the flat field test.), so the pileup effect is
negligible.

5. SSD ENERGY SCALE

Using the characteristic X-ray lines atop the continuum spectra, the SSD energy scale can be determined. As shown
in Figure 3, six strong and single peaked lines were selected to determine the energy scale. These six lines were
identified to be, from left to right:

Table 2. X-ray Lines atop the C-continuum

X-ray Line Energy
Si-Ka, W-Ma and W-Mg  1.77525 keV *
Ca-Ka 3.69048 keV
Ti-Ka 4.50885 keV
V-Ka ** 4.94968 keV
Fe-Ka 6.39951 keV
W-La 8.37680 keV

* The line center for Si-Ka, W-Ma and W-Mf multiplet is weighted by line strength according to the HEG spectrum.
** Another choice for this line is Ti-Kf3 (4.93181 keV). We chose V-Ka because this line has almost the same intensity
as the Ti-Ka line, while in the same spectrum all the  lines are about an order of magnitude weaker than their «
counterparts. Also V-Ka gives a slightly better linear fit to the energy scale. Had Ti-K3 been chosen, the result is
to lower the energy offset (parameter a in Eq ??) by 0.003 keV, i.e. to decrease parameter a in Table ?? by 0.003.

To determine the line centers, a Gaussian profile with a quadratic function base was fitted to each peak. The
centers of fitted Gaussian are shown in Figure 3 as dashed vertical lines with the peaks. Each SSD energy scale is
determined by fitting a linear least square fit of the line energies as a function of line centers:

Energy = a+b- Channel (1)

Figure 4 shows the energy to channel linear fit for the two SSDs. The fit is extremely good, as shown in Figure 5,
which plots the residuals of the fits. Table 3 lists the fitted parameters.

Table 3. Flat Field Test SSD Energy Scale Linear Fit Parameters

Detector Spectral data a b
SSX ss5_116414i000.pha  0.0541744 0.00482999
SS5 ssx_116414i000.pha  0.0464989 0.00502963

Using the above energy scales, the SSD spectra are converted from functions of channel to functions of energy
and re-binned into equal energy bins. Figure 6 shows the C-continuum SSX and SS5 spectra as functions of energy,
in units of counts per second per keV, where all the spectral lines are aligned up.

2Notice that the data file for SSX starts as 'ss5’ and vice versa, because the two SSDs were swapped and the data files were named
after the location of the detector.



6. SSD DEADTIME CORRECTION

In the raw data, the deadtime correction was automatically estimated, using a built-in circuitry and algorithms
that follow the Gedcke-Hale formalism,? and entered in the pha file header for each spectrum. However, for the
SSDs, Gedcke-Hale formalism does not provide an accurate estimation because of low-level noise; the lower level
discriminators were set very low to extend the SSDs’ energy coverage as low as possible. A more accurate way to
calculate the deadtime correction is to use the pulser method, in which artificial pulses are injected into the detector
preamplifier to mimic real x-ray events. Since the pulses are processed just like X-rays — subject to interaction with
hidden noise events, preamplifier reset pulses, etc. — the fraction of pulses that appear in the output spectrum is, to
a good approximation, equal to the system livetime fraction. The formula applying the deadtime correction to SSD
spectra using the pulser method is:

Input pulser counts

(2)

Actual counts = Measured counts -
Measured pulser counts

where the Measured counts and Measured pulser counts are from pileup corrected spectra.

Figure 7 illustrates how to determine the measured pulser counts. The top panel shows the SSX pulser spectrum
from the SSD flat field test (see Figure 3). The bottom panel shows the SS5 pulser spectrum. Two vertical dotted
lines surround the pulser peak indicate the pulser region. A power law is fitted to the spectrum outside the pulser
region (100 channels below the left vertical line plus 100 channels above the right vertical line). The measured pulser
counts equal the total counts under the pulser spectrum within the pulser region minus the total counts under the
fitted power law spectrum within the pulser region. Since the counting rates are very low for the flat field test, the
pileup effects are negligible. Later when we use the same method to do the deadtime corrections for the effective
area measurements, we apply it to the pileup corrected data only.

For X-ray counting rate calculated using the pulser deadtime correction, the formula is:

Measured counts

Actual rate = : - Pulser deadtime correction (3)
Truelime
_ Measured counts Input pulser counts (4)
n Truelime Measured Pulser counts

where TrueTime is the full integration time which is listed in the pha file header as #trueTime_sec.

For the effective area, A g (F), calculated using the SSX counts, Cssx (F), divided by SS5 counting rate, Csgs(E),
the pulser deadtime correction is:
SSX Pulser deadtime correction

Acg = Acg(wfo deadtime correction) - SS5 Pulser deadtime correction (5)
( SSX Input pulser counts )
SSX M d pul t
= A.g(w/o deadtime correction) - copurer preer T (6)

SS5 Input pulser counts
SS5 Measured pulser counts

7. BEAM UNIFORMITY TEST

We can obtain the relative quantum efficiency by dividing the two SSD spectra directly only if the X-ray beam
intensities were exactly the same toward the directions of the two SSDs. But was the beam from the C-continuum
source really uniform? To answer this question, a C-continuum beam uniformity test was made immediately after
the C-continuum flatfield test (the flatfield test run ID is 116414, the beam uniformity test run ID is 116415).

During the beam uniformity test, the C-continuum source was operated in the same condition as for the flat
field test, and the FPC-5 (i.e. the FPC detector in the Building 500) was scanned from the FPC-5 home position
to the center (optical axis towards the HRMA), and to the SSD-5 home position, and then it scanned back in a
reversed path. Two spectra were taken at each position. Taking the two spectra taken at the SSD-5 home position
and dividing by the average of the two spectra taken on the optical axis, we obtain the relative flux ratio at those
two positions as a function of energy (with low spectral resolution). Figure 8 show the relative flux ratio. It is seen



that the beam is close to but not exactly uniform. It varies between 1.00 and 1.02. The solid curve in Figure 8 is a
quadratic fit to the data. This is purely an empirical model which fits the data very well. The reduced x? is 1.01652.
So the beam uniformity as a function of energy can be well represented using this quadratic function, with a relative
error of 0.0034:

FR =1.01341 — 0.00512E + 0.000567 E2 (7
where F'R is the flux ratio of at SS5 position vs. on the optical axis, and F is the X-ray energy in unit of keV.

8. SSD RELATIVE QUANTUM EFFICIENCY

With all above considerations, we now finally can obtain the relative quantum efficiency of the two SSDs. The
SS5/SSX quantum efficiency ratio, R(E), is:

Csss fiatficta(E)  SS5 pulser deadtime correction

R(E) = .
(E) Cssx flatfietd(E) SSX pulser deadtime correction

(SS5 to source distance)? SSX aperture area

(SSX to source distance)? "SS5 aperture area
(Beam fluz ratio between SS5 position and optical azis) (8)

where

o Csss fiatfieid(F) and Cssx fiatfieia(F) are counts as functions of energy for the two SSDs from the flatfield
test (see Figure 6).

e Using the method discussed in §6, the pulser deadtime corrections are calculated to be 1.0092 and 1.0569 for
SS5 and SSX, respectively.

e The source to SSD distances are 537.778 m and 38.199 m for SS5 and SSX, respectively. Errors on the distance
measurements are negligible for this calculation.

e For the flat field test, the apertures used were 2 mm (actual diameter = 1.9990 £+ 0.0073 mm) for SSX. and
5 mm (actual diameter = 4.9962 + 0.0073 mm) for SS5. The combined relative error due to the two aperture
area uncertainties is 0.0079.

e For the beam flux ratio, measured with FPC-5, we use Equation 7.

Figure 9 shows the SS5/SSX QE ratio, R(E), as a function of energy. The top panel show the QE ratio calculated
using formula (8). R(E) is near unity for energies above 2 keV as expected. R(FE) varies drastically for energies
below 2 keV, because of the icing effect (see the following section). In this case, there was more ice on the SSX
therefore there was much higher transmission for SS5. A wiggle around line 1.775 keV indicates that the two SSDs
have slightly different spectral resolution.

This R(E) curve is rather noisy. In the bottom panel, the data were binned into 0.3 keV bins and fitted to a
flat ratio for energies above 3 keV (since at energies between 2 and 3 keV, the ratio was still slightly effected by the
icing). The fit is very good, with a ratio of 1.0141 + 0.0021 and x2 = 1.0897. Here the error, 0.0021, is only the
standard deviation of the mean of the binned flat field data in the 3-10 keV band. The total error for the quantum
efficiency ratio also includes the beam uniformity error (0.0034) and the aperture size error (0.0079). Adding them
in quadrature, the total relative error is 0.0088.

Because of the icing effect, the flat field test can only provide us with this ratio within 3-10 keV band. Since
this ratio is reasonably energy independent, we assume, for the entire 0-10 keV energy band, the SS5/SSX quantum
efficiency ratio is: 3

R(E) = 1.0141 + 0.0089 (9)

3Because this ratio is energy independent, a large portion of the offset from unity is probably due to the combined aperture size
error (0.0079). Because the aperture wheels were built into the SSD system, the apertures moved with the SSDs when the two SSDs
were swapped during the flat field test. The measured SS5/SSX quantum efficiency ratio reflects a combination of real QE ratio of the
SSDs and the aperture area ratio. In any case, the result of R = 1.0141 4 0.0089 provides the correct QE ratio for the effective area
measurements.



9. SSD ICING EFFECT

In this section we discuss the so called SSD icing effect which we encountered in the previous section. Because SSD
was cooled to liquid nitrogen temperature, even in its vacuum container, there was still a small amount of trapped
water which condensed on the surface of the SSD to form a very thin layer of ice. This thin ice layer decreases the
transmission of low energy X-rays.

In order to monitor the ice build up, a radioactive isotope %33 Cm excited Fe source was placed on the aperture

wheel and rotated in front of the SS5 from time to time. The Figure 10 shows the Fe-La (0.705 keV) and Fe-Ka
(6.40 keV) line intensity with error bars measured with SS5 as a function of time from 960824 to 970521 (JD 2450320
— 2450590). The SSD C-continuum measurements were made in the middle of that period on 970113 and 970130.
In the top panel, the Fe-La intensity has two peaks, on 961031 and 970223, followed by declines. These two peaks
indicate the time when the SS5 was warmed up and we assume there was no ice then. The declines indicate the ice
build up, reducing the transmission of Fe-La into the SS5. In the bottom panel, the fluctuations of Fe-Ka intensity
could be due to icing, source aging and other temporal variations. To obtain the icing information, we only need to
focus on the intensity ratio of Fe-La/Fe-Ka. Data from Figure 10 are listed in Table 4: At the end of each ice build
up period, the Fe-La/Fe-Ka transmission ratio is 74% of its initial value. This result can be used to obtain the ice
thickness.

Table 4. SSD-500 Icing Data

Icing Period Fe-La Intensity Fe-Ka Intensity Intensity ratio
First Period Begin 34.2 90.8 0.3767
961031 - 970129  End 24.5 87.9 0.2787
End/Begin Ratio 74.00 %
Second Period  Begin 32.0 87.1 0.3673
970223 - 970514  End 23.5 86.5 0.2717
End/Begin Ratio 73.97 %

Figure 11 shows the X-ray transmission of ice. The solid line is a fit with Fe-La (0.705 keV) line transmission
being 74% of Fe-Ka (6.40 keV) line transmission. The result is a 0.3 pm ice layer. For reference, a transmission
curve of a 1um ice layer is plotted as a dotted line. According to this fit, during the calibration, the thickest ice
build up on SS5 was 0.3 um, at around 970129 and 970514. At other times, the ice was thinner. The SSX did not

have a 2§ Cm source, so we do not have any data about the icing on the SSX.

Figure 11 tells us that icing has less than 0.7% effect for energies over 3 keV. At 2 keV, it can decrease the X-ray
transmission by up to 2%. At the same time, icing has very severe effect for energies below 2 keV. Because the ice
build up is a function of time and the build up on two SSDs could be different, the SSD data below 2 keV are not
reliable. We have seen an indication of that in the previous section (see Figure 9). So in the flat field data analysis
and in the following effective are data, we will not use the SSD spectra at low energies.

10. BACKGROUND

During the HRMA calibration, background runs were taken almost every day when the source valve was closed and
all the detectors were turned on. To evaluate the effect of the background on the SSD C-continuum measurements,
we examined all the SSD background spectra and found that the background is extremely low.

Figure 12 shows a pair of typical SSD background spectra. It was taken on 970124, with TRW ID D-IXF-BG-
1.021, run ID 110036 and integration time of 2100 seconds. They are summed spectra of seven background runs
of 300 seconds each. It is seen that, other than the pulser peak at near channel 2400 and some electronic noise
near channel 60, the spectra are very clean in the region to be used to reduce the HRMA effective area (channels
100-2000). The average counts per channel per second are 0.000046 and 0.000024 for SSX and SS5, respectively. For
all the background spectra, the average counting rate in channels 100-2000 ranges from 0.000019 to 0.000098 c/s/ch.
This level of background is negligible in our data analysis.



11. DATA ANALYSIS AND REDUCTION

With all the above considerations, we can now obtain the HRMA effective area. The four Phase-E SSD effective area
measurements for the four shells have TRW IDs of E-IXS-M(C-15.001,2,3,4 and run IDs 110539, 110540, 110541, and
110542. The “MC” in TRW ID stands for molecular contamination measurements, but they also serve as on-axis
effective area C-continuum measurements.

We start with the pileup corrected SSX and SS5 spectra (see §3). In Figure 2, the upper panels show the pileup
corrected SSX and SS5 spectra. The SSD energy scale was determined using the six characteristic X-ray lines atop
the continuum spectra, indicated by dashed vertical lines, as discussed in §5. First a Gaussian profile with quadratic
function was fitted to each peak to determine the line center. The fitted centers for the same line in different spectra
of the same SSD differ only by a couple of channels, which is well within the fitted errors. So an averaged center for
each line from the four measurements was used to obtain the energy scale. The energy scales of SSX and SS5 are
determined by doing a linear least squares fit of the averaged line centers to the line energies using the simple linear
Equation (1).

Figure 13 shows the energy to channel linear fit for the two SSDs. The fit is extremely good, as shown in Figure 14,
which plots the residuals of the fits. Table 5 lists the fitted parameters for the two SSDs. The energy scale is slightly
different from that of the flat field test.

Table 5. Effective Area Measurements SSD Energy Scale Linear Fit Parameters

Detector Spectral data a b
SSX ssx_110539,540,541,542i000.pha  0.0547638 0.00490269
SS5 ss5.110539,540,541,5421000.pha  0.0443109 0.00508020

Using the linear fit parameters listed in Table 5, each of the eight SSD spectra was scaled as a function of energy.
Then they were binned into equal energy bins by dividing the spectra by the fitting parameter b in Table 5. The
pulser deadtime corrections are also applied to the spectra the same way as to the flat field data. The results are
four pairs of SSX and SS5 spectra as functions of energy, keV, and in units of counts/second/keV. They are shown
in the top and middle panels of each quadrant plot in Figure 15. The dashed vertical lines indicate the six X-ray
lines used for energy scaling.

12. EFFECTIVE AREA

The HRMA effective area at the XRCF is defined to be the photon collecting area in the plane of the HRMA pre-
collimater entrance, which is 1491.64 mm forward from CAP Datum-A (the front surface of the Central Aperture
Plate), i.e. 526.01236 meters from the source.*

For the C-continuum SSD measurements, the HRMA mirror effective area, A g (E), is:

_ CSS’E(E) PDCSS?ﬂ D}2zrma
Ar() = y(B) PDC, DE, e FE) Ho

585

where
o (s (E) and Cys5(E) are the SSX and SS5 spectra with the correct energy scale and equal energy bins (in
units of counts/second/keV).
e PDCy,, and PDCy,5 are the pulser deadtime corrections for the SSX and SS5.

e Dprma = 526.01236 meter is the distance from the source to the HRMA pre-collimater entrance, where the
effective area is defined.

4This definition is necessary because of the diverging X-ray beam at the XRCF. It is not necessary for on-orbit case as the X-rays are
parallel and the effective area is the same in any plane.



e D5 = 38.199 meters is the distance from the source to SS5.

e A, is the SS5 aperture area. A 2 mm aperture was used for all the measurements. Its actual equivalent
diameter is 1.9990 £ 0.0073 mm. So A, = 0.031385 £ 0.00023 cm?

e R(E) = 1.0141 + 0.0089 is the relative SS5/SSX quantum efficiency from the flat field test.

Because each of the SS5 spectra are rather noisy, four SS5 spectra are averaged to make Cys5(F), which has the
noise reduced by a factor of two. The source intensity was stable enough during these four measurements so the
temporal fluctuation is negligible. The Cj,, (F) and Css5(F) are obtained using the method discussed in the previous
Section. The PDCyy, and PDCjg; are obtained using the method discussed in §6 and listed in Table 6.

Table 6. Effective Area Measurements SSD Pulser Deadtime Corrections

Run ID PDCssz PDCaverage EED] PDCssz/PDCaverage 585

110539  1.11827 1.01651 1.10011
110540 1.10408 1.01651 1.08615
110541  1.09579 1.01651 1.07799
110542  1.07069 1.01651 1.05330

The bottom panels of each quadrant plot in Figure 15 show the effective area results according to equation 10.
The six vertical dashed lines are the six energy lines used to determine the energy scale. Each effective area curve
was binned into 0.1 keV energy bins. According to the SSD energy scale, there are 20 channels in each energy bin.
The plotted error bars are the standard deviation of the mean in the energy bins. Systematic errors such as the SS5
aperture area uncertainly (0.0073) and the SSD quantum efficiency ratio error (0.0088) are not included in these four
plots but will be included later in the final results.

13. ERROR ANALYSIS

The error of the HRMA effective area is:

Oea = (Ugfbin + a%mmfap + age)l/Q (11)
where
Oe_bin Standard deviation of the mean in each 0.1 keV bin of the SSD spectra ~1-4%
O2mm-—ap Uncertainty of the SS5 2 mm aperture area (0.031385 + 0.00023 cm?) 0.73%
Oge Error of the SSD quantum efficiency ratio (1.0141 £ 0.0089) 0.88%
Oea Effective area error ~1.3-4%

For the effective area of the entire HRMA, the absolute errors are the quadrature sum of the absolute errors from
the four shells. Therefore its relative errors are reduced accordingly, to ~0.7-3.6%.

14. COMPARING MEASUREMENTS WITH RAYTRACE

Figure 16 compare the measured effective area with the raytrace prediction within a 2 mm aperture for each mirror
shells. In the top panel of each quadrant plot, the solid line is the raytrace prediction, the dotted line is the SSD
measured effective area with the C-continuum source, which is the same as plotted in the bottom panel of Figure 15.
As mentioned before, the SSD data below 2 keV (most parts are higher than the raytrace prediction) should be
ignored due to the icing effect. The FPC spectral line data are also plotted in the figures for comparison.

For energies above 2 keV, the data are significantly below the prediction, especially for shell 1. The bottom panel
of each quadrant plot in Figure 16 show the effective area ratio of data/raytrace. It is seen that for shell 1, the data
is about ~10-15% less than the prediction at 2—4 keV and ~15-30% less than the prediction for shell 1 at 46 keV.
For other shells the discrepancies are less than 15%.



Figure 17 shows the full HRMA effective area data with the raytrace prediction within a 2 mm aperture. The
SSD C-continuum data and four of the seven FPC line spectral data (0.277 keV, 1.49 keV, 4.51 keV and 6.40keV)
are the sums of data from the four shells. The SSD line spectral data and three of the seven FPC line spectral data
(0.93 keV, 5.41 keV and 8.03 keV) are the direct measurements of the full HRMA. The data are below the raytrace
prediction by ~5-10% in the 2-10 keV band. In the raytrace prediction, there is a dip near the Ir M-edge (2.05 keV).
The SSD C-continuum data could not reveal it due to the finite spectral resolution of the SSD. However, the SSD
spectral line measurement at the 2.16 keV (Nb-L) did show a dip. The fluctuations in the EA ratio curves near the
Ir M-edge in the 2.0-2.3 keV region are also due to the finite spectral resolution of the SSD.

In Figures 16 and 17, most of the FPC line data are below the SSD continuum data. Presently we do not know
the exact cause of this. We hope to resolve this discrepancy as this work progresses.

15. CALIBRATING THE HRMA EFFECTIVE AREA

The XRCF HRMA effective area raytrace predictions were originally generated based on the HRMA model which
is accurate to the best of our knowledge, including the HRMA tilt and decenter measured during the calibration.
However, as we can see in the previous section, the calibration data show that for energies higher than 2 keV, the
measured effective area is substantially less than the predicted effective area by well more than the experimental
errors, especially for shell 1. At least part of this discrepancy is due to differences in the way the raytrace model
calculates reflectivity, compared to our derivation of optical constants via our synchrotron measurements. There are
also some discrepancies between the mirror surface roughness scattering model and the data measured from the wing
scan measurements. We are currently assessing and correcting for these differences. For the present, based on the
principle that theory should yield to the experiment, we use the XRCF calibration data to scale down the raytrace
empirically for both on-orbit and XRCF HRMA effective area predictions.

In order to smooth the Poisson noise in the correction factor, a fourth order polynomial is used to fit the deficit
curve of the effective area ratio between 2.3 keV and 10 keV. The polynomial fit curves for the four shells and the
HRMA are plotted as solid curves in the data/raytrace ratio plots in Figures 16 and 17. These polynomials as
functions of energy are to be used to scale the raytrace prediction. For higher energies where the effective area drops
to below a few cm? (i.e. >6.7 keV for shell 1, >7.9 keV for shell 3, and >9.0 keV for shell 4), there are not enough
data to make a reasonable fit, and a ratio of unity is used.

Since the SSD data are not reliable for lower energies, FPC spectral line data for energies below 2.3 keV are used
for scaling. The average ratios between the FPC data and the raytrace are used as the scaling factor. They are
1.0234 , 0.9983, 0.9998, 1.0136, and 1.0055, for shells 1,3,4,6 and the HRMA, respectively.

The errors for the scaling factors are:

FPC measurement errors 0.3-1.9%

B < 2.3 keV: Deviations of the FPC data from the scaling factor 0.7-3.2%
’ ) Statistical errors from raytrace simulation <0.3%

Total scaling factor errors ~1.1-3.4%

Standard deviation of the polynomial fit 1.7-3.3%

E> 23 keV: Deviation of each data point from the polynomial fit 0.2-6.0%
= ’ Statistical errors from raytrace simulation <0.3%
Total scaling factor errors ~2-T%

16. HRMA EFFECTIVE AREA RAYTRACE PREDICTIONS

The original raytrace predictions of the HRMA effective area for both the on-orbit and at XRCF cases were generated
based on the HRMA model. The HRMA model includes mirror tilts and decenters measured at Kodak and XRCF,
mirror low frequency surface maps from the HDOS metrology measurements, mirror CAP, pre- and post-collimators,
apertures, ghost baffles, and mirror distortion due to epoxy cure shrinkage. For the XRCF case, the HRMA model
also includes the finite source distance at the XRCF and the mirror distortion due to gravity.



The reflectivities are based on: ®> E < 2 keV: Gullikson ’95 optical constant table.?; E > 2 keV: AXAF mirror
witness flat synchrotron measurements made by Graessle et al.*

The mirror surface roughness scattering is based on the Power Spectral Density (PSD) produced from the HDOS
metrology measurements and calculated with a program “foldw1” written by Leon Van Speybroeck, which is based
on the scattering theory by Beckmann and Spizzichino.®

Figures 18 and 19 show the raytrace predicted effective areas and encircled energies of shell 1 and the HRMA
at the XRCF. The top panels shows the effective area curves within 2 mm, 35 mm diameter apertures, and 27
steradians. The bottom panels show the encircled energies of 2 mm and 35 mm apertures as fractions of that within
27 steradians. Figures 20 and 21 show the raytrace predicted effective areas and encircled energies of shell 1 and the
HRMA on-orbit.

The purpose of showing these figures is to compare the encircled energy curves between the XRCF and the on-
orbit cases. Since the SSD C-continuum effective area data we reduced are for only 2 mm aperture, we should be
able to use these data to scale down the raytrace predicted XRCF effective area curve within 2 mm diameter. How
about the XRCF effective area within larger apertures and 27 steradians? How about the on-orbit cases? Can we
use the XRCF 2 mm aperture measurement to scale down other effective area curves the same way?

Let’s first look at the XRCF cases. The fractional encircled energy within 2 mm aperture varies as a function of
energy and from shell to shell. For shell 1 at 6.5 keV, it can be as low as 86% (see Figure 18). For other shells (not
shown), the fractional encircled energy curve are all higher than 92%. Can we use the 2 mm aperture data to scale
down the effective area within larger apertures and 27 steradians? The short answer is “we don’t know”, because
we still don’t know the exact cause or causes of the discrepancy between the data and the model. But we have some
FPC spectral line measurements using the 35 mm diameter aperture. The data disagree with the raytrace prediction
by about the same amount as the 2 mm aperture data did. The fractional encircled energy within 35 mm aperture
is more than 99% for almost all the shells and all energies (see Figures 18 and 19). Therefore with good confidence
we should be able to use the 2 mm aperture data to scale down the XRCF effective area within larger apertures as
well as within the 27 steradians.

Next let’s look at the on-orbit cases. The effective area and fractional encircled energy curves are very similar
to the same curves for the XRCF cases. Therefore we can, with the same confident level, scale down the on-orbit
HRMA effective area prediction curve the same way as for the XRCF cases.

Therefore, we will use the 2 mm aperture calibration data to scale down the raytrace predicted effective areas
within any apertures greater or equal to 2 mm diameter for both on-orbit and at XRCF cases.

17. XRCF HRMA EFFECTIVE AREA

Figures 22 and 23 show the XRCF HRMA and four shells effective areas within 2 mm diameters and 27 steradians,
for the original raytrace and the calibrated curves with errors estimated in §15.

These are our current best estimates for the HRMA effective area at the XRCF. Other calibration teams can use
these data to calibrate their instruments. The “rdb” tables of the XRCF HRMA effective area, as well as Figures 22
and 23, can be accessed on the WWW page: http://hea-www.harvard.edu/MST /mirror/www /xrcf/hrma_ea.html,
or are available from the first author.

18. ON-ORBIT HRMA EFFECTIVE AREA PREDICTION

Figures 24 and 25 show the on-orbit HRMA and four shells effective areas within 2 mm diameters and 27 steradians,
6 for the original raytrace and the calibrated curves with errors estimated in §15.

5Because we used different optical constant tables for E < 2 keV and E > 2 keV for the raytracing, there is a discontinuity at 2 keV
in all the raytrace effective area curves. Obviously this discontinuity is not real and the optical constant in two tables should agree at
2 keV. We are currently working to resolve this discrepancy.

6 Although it is not possible to use just a single shell on-orbit, the HETG operations require the effective area predictions for Shells
143 and Shells 4+6 separately.



These are our current best on-orbit effective area predictions for the HRMA. They can be used to make AXAF on-
orbit performance predictions. The ”rdb” tables of the predicted on-orbit HRMA effective area, as well as Figures 24
and 25, can be accessed on the WWW page: http://hea-www.harvard.edu/MST /mirror/www/orbit /hrma_ea.html,
or are available from the first author.

19. CONCLUSION

The HRMA calibration at the XRCF of MSFC made novel use of the X-ray continuum radiation from a conven-
tional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum
measurements proved advantageous in calibrating the effective area of AXAF’s High-Resolution Mirror Assembly
(HRMA) for the entire AXAF energy band.

The HRMA effective area was obtained by comparing the spectrum detected by a SSD at the focal plane with the
spectrum detected by a beam normalization SSD in Building 500. Many systematic effects such as pileup, deadtime,
beam uniformity, energy scale, icing, relative quantum efficiency, background, etc., must be analyzed during the data
reduction process.

In the data analysis, we did not use the actual SSD spectral response matrices. This could introduce an error
as the energy resolutions of the two SSDs are slightly different. However, we did convolutions of the preliminary
SSD spectral response matrices with the calibration data scaled raytrace predictions, and compared them with the
measured effective area for each shell. The fit was reasonably good. Had we used the original raytrace prediction
in the convolution, the fit would not be acceptable. This justifies the method we used to reduce the data and the
calibrated effective area we generated. This work will be improved in the near future by using more detailed SSD
response matrices calibrated at the BESSY to unfold the spectra and a pileup correction model as a continuous
function of energy.

The results of the SSD C-continuum measurements show that the measured effective area is substantially less
than the predicted effective area by well more than the experimental errors, especially for shell 1. Although we
still don’t have a good explanation for the cause or causes of this discrepancy on this important AXAF capability,
we are currently assessing the reflectivity and surface scattering calculations in our raytrace model. When this is
done, we will re-assess the differences between the data and the model, and, if necessary, apply similar, but smaller,
polynomial corrections to our improved raytrace predictions.

Presently we have yet to achieve the calibration goal of 1% precision for the HRMA effective area. We expect to
approach this goal as this work progresses.

Based on the SSD C-continuum Measurements at the XRCF, we have calibrated the HRMA effective area for its
on-orbit performance as well as its actual values at the XRCF. The HRMA effective area is one of the most important
AXAF capabilities. These calibrated values of the effective area can be used to make AXAF on-orbit performance
predictions, and by other AXAF teams to calibrate their science instruments.

The HRMA effective area “rdb” tables and their figures are available, as of this writing, on the following World
Wide Web pages, and also available from the first author.

XRCF: http : /[ hea-www.harvard.edu/M ST /mirror Jwww/zrcf [ hrma_ea.html
On-orbit:  hitp : //hea-www.harvard.edu/MST /mirror /www/orbit/ hrma_ea.html
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Figure 1. C-continuum SSX and SS5 spectra of four HRMA shells. Aperture: 2 mm; Integration time: 1000 seconds.
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Figure 2. SSX spectra and pileup correction of four shells. Upper panel of each quadrant plot show the raw data and pileup corrected
data. Lower panel shows the ratio of pileup corrected data to the raw data.
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Figure 3. C-continuum flat field test SSX and SS5 spectra. Run ID: 116414. 57600 seconds. Dashed vertical lines indicate fitted centers
of X-ray characteristic lines to be used for calibrating the SSD energy scale.
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Figure 7. SSX and SS5 pulser spectra. Two vertical dotted
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is the power law fit to the continuum.

Figure 6. C-continuum flat field test SSX and SS5 spectra as
functions of energy, using energy scales from Figure 4.
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Figure 12. SSX and SS5 spectra of background run. Date: 970124; Run ID: 110036; 2100 seconds.

SSX Energy Scale Data: E-IXS—-MC—15.00 Series
T T T

10 SSX Energy Scale Linear Fit Errors E—-IXS—MC-15.00 Series
[ 1 0.010 T T T
[ ] L STD = 0.00592192 keV |
- Energy = 0.0547638 + 0.00490269*Channel q r e
8 _ L 4
= B 0.005 — —
g o - = i 1
s F B = r B
¥t B § 0.000f -
o 3 L B
g 4 ] = [ i
= q -
L 4 = L 4
2 — -0.005— —
0 L L L L 1 L 4
0 500 1000 1500 2000 —0.010 L L L
Channel 0 500 1000 1500 2000
Channel
SS5 Energy Scale Data: E-IXS—-MC—15.00 Series
10 T T T SS5 Energy Scale Linear Fit Errors E—-IXS—MC-15.00 Series
[ 7 0.010 T T T
[ ] L STD = 0.00828277 keV |
 Energy = 0.0443109 + 0.00508020*Channel 7 r €
8 _ L 4
= B 0.005— —
% o 5 B i ]
5 [ ] T [ i
& = B S 0.000—- —
o 3 L B
R T =] [ i
[ ) =
L i ) L 4
2 — -0.005 — —
0 L L L - 4
0 500 1000 1500 2000 —0.010 L L L
Channel 0 500 1000 1500 2000

Channel
Figure 14. SSX and SS5 energy scale linear fit residuals
for the C-continuum effective area measurements.

Figure 13. SSX and SS5 energy scales for the effective area
measurements, fitted with six X-ray line energies, averaged over
four spectra.



SSX Spectum Data: ssx_110540i000.phac

SSX Spectum Data: ssx_110539i000.phac
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Figure 15. SSD C-continuum effective area measurements for the four shells: 2 mm aperture. Top panel of each quadrant plot is the

SSX spectrum. Middle panel is the SS5 spectrum. Bottom panel is the measured effective area.
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Figure 16. Calibration data vs. raytrace prediction.

Top panel of each quadrant plot shows the XRCF effective area within 2 mm

aperture. Bottom panel shows the effective area ratio of data/raytrace.
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panel shows the effective area ratio of data/raytrace.
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Figure 20. Raytrace prediction of on-orbit
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Figure 19. Raytrace prediction of XRCF HRMA effective area

and encircled energy.
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Figure 22. The XRCF HRMA and four shells effective areas

within 2 mm aperture. Raytrace prediction scaled by the cali-
bration data.
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Figure 23. The XRCF HRMA and four shells effective areas
within 27 steradian. Raytrace prediction scaled by the calibra-
tion data.
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