Pioneering X-ray Continuum Fitting Measurements of Black

Jeff at the Thomas Edison Museum

Jack Steiner MIT Kavli Institute

The Black Hole Binary Zoo

The RXTE Road Map

Count Rate

No-Hair Theorem

Mass: M

Spin: **a*** (J= **a*** GM²/c)

Charge chevitralized and upportant

The gravity of spinning BHs

"In my entire scientific life, the most shattering experience has been the realization that an exact solution of Einstein's equations of general relativity, discovered by Roy Kerr, provides the absolutely exact representation of untold numbers of massive black holes that populate the **universe.** This shuddering before the beautiful, this incredible fact that a discovery motivated by a search after the beautiful in mathematics should find its exact replica in Nature, persuades me to say that beauty is that to which the human mind responds at its deepest and most profound."

- Subrahmanyan Chandrasekhar

Dynamical Mass Measurements

(Jerry Orosz's talk)

Weighing Black Holes

"Mass function" from radial velocities - a mass lower limit

 \ominus

On to Spin

Measuring the Inner Disk Radius

 $a_* = 1$ $R_{ISCO} = 1M G/c^2$ (15 km)

Two Primary Methods of Measuring Spin

Continuum Fitting Method
 Fitting the thermal 1-10 keV spectrum of the accretion disk

Fe Line (Reflection) Methodavier Garcia's talk)

Fitting the relativistically-broadened profile of the ~6.4 keV Fe K

Other Methods

line

- Quasi-periodic X-ray oscillations (100-450 Hz)
 - Gravitational Waves
 - X-ray Polarimetry

Continuum Fitting

(Zhang, Cui, & Chen 1997)

Measuring the Radius of a Star

- Measure the flux F received from the star
- Measure the temperature T_{*} (from spectrum)
- Independent knowledge of distance (i.e., from parallax)

$$L_{*} = 4\pi D^{2}F = 4\pi R_{*}^{2}\sigma T_{*}^{4}$$
$$\Delta\Omega = \frac{\pi R_{*}^{2}}{D^{2}} = \frac{\pi F}{\sigma T_{*}^{4}}$$
$$R_{*} = D\sqrt{\frac{\Delta\Omega}{\pi}} = 37.5 \frac{L_{*}^{1/2}}{T_{*}^{2}} (\text{cgs})$$

Measuring R_{Isco}

Radius R of a Star $L = 4\pi D^2 F = 4\pi R^2 \sigma T^4$ Solid angle: $(R/D)^2 = F/\sigma T^4$ $D \rightarrow \mathbb{R}$

Radius R_{ISCO} of Disk Hole F and $T \rightarrow \text{solid angle}$ $D \text{ and } i \rightarrow \mathsf{R}_{\text{ISCO}}$

► **a***

R_{Isco} and **M**

Requirements for the X-ray Continuum Fitting Method

1997

Using many of these ...

Get Spin (LMC X-3)

How Well Does it Work in Practice? (Foundation 1: A constant Rin)

- Extremely well
- Multiple independent observations of the same BH
 - at different luminosities (up to 30% L_{Eddington})
 - with different instruments
 - separated by many years

LMC X-3: 1983-2009 Steiner et al. 2010

0.3 0.1 0.03 0.03 1980 1990 2000 2010

RXTE
Suzaku
Swift
XMM

▲ ASCA ◦ BeppoSAX ▲ Ginga ■ EXOSAT

LMC X-3: 1983-2009 Steiner et al. 2010

LMC X-3: 1983-2009 Steiner et al. 2010

Does R_{in} match R_{ISCO}?

Lessons from GRMHD

6M

Penna et al. 2010

3D GRMHD Simulation Results (for thin disks)

Kulkarni et al. 2011; Zhu et al. 2012

Reynolds & Fabian (2008); Noble, Krolik & Hawley (2009, 2010, 2011)

Shafee et al. 2008; Penna et al. 2010

Binary Spin-Orbital Alignment

BH spin and orbit align?

$$J_{orb}/J_{spin} \approx 65 a_*^{-1} \left(\frac{M}{10 M_{\odot}}\right)^{-4/3} \left(\frac{M_2}{M_{\odot}}\right) \left(\frac{P}{1 d}\right)^{1/3}$$

Alignment time scale < binary lifetime

$T_{\text{alignment}} / T_{\text{binary}} = 0.01 a^{13726} (\alpha / 0.03)^{13/8} (L_{\text{out}} / L_{\text{Edd}})^{1/8}$ $\times (\epsilon / 0.3)^{-1/8} (M_2 / M_{\square})^{-1} \sim 0.01$

Natarajan & Pringle 1998 Maccarone 2002 Steiner & McClintock 2012

Fragos et al. (2010) very conservatively conclude that most black hole primaries will be tilted < 10 degrees.

XTE J1550-564: 1998 outburst

J1550's Jet Trajectories

J1550's Results

Steiner & McClintock 2012)

Comparing J1550's Jet and Binary Axes Angles on the Sky

Steiner & McClintock (2012)

Jeff's BHs							
A complete description of 10!							
System	CF-Spin	M/M_{\Box}	Reference				
a.*							
Wind-Fed							
Cygnus X-1	> 0.98	15.8 ± 1.0	Gou+ 2013; Orosz+ 2011				
LMC X-1	0.92 ± 0.06	10.9 ± 1.4	Gou+ 2009; Orosz+ 2009				
M33 X-7	0.84 ± 0.05	15.7 ± 1.5	Liu+ 2008; Orosz+ 2007				
Transient							
GRS 1915+105	> 0.98	12.4 ± 1.9	McClintock+ 2006; Reid+ 2014				
GRO J1655-40	0.7 ± 0.1	6.3 ± 0.5	Shafee+ 2006; Greene+ 2001				
Nova Mus 1991	0.63 ± 0.18	11.0 ± 1.8	Chen+ 2016; Wu+ 2016				
4U 1543-47	0.45 ± 0.25	7.5 ± 1.1	Steiner+ 2018; Orosz+ 2018				
XTE J1550- 564	0.34 ± 0.25	9.1 ± 0.6	Steiner+ 2011; Orosz+ 2011				
IMC X-3	0.25 ± 0.15	7.0 + 0.3	Steiner+ 2014; Orosz+ 2014				

Prospects for Spin Measurement

Count Rate

A preview - 2:1 Low-Frequency QPOs with NICER

Neutron Star Interior Composition ExploreR

ISS external camera:

NICER's home since June 2017

NICER specs

- Most sensitive to X-ray QPOs (2x XMM)
- Most sensitive to soft Xray lines (better than gratings < 1 keV)
- 25x better timing than RXTE
- CCD-like energy resolution
- High sensitivity to faint sources (low bg) while handling brightest sources

• No Pileup (!)

The NICER Sky

MAXI J1820+070

Fast Spectroscopy

Break the MAXI 1820 data into segments of 5,000 counts (~0.2s) at peak.

The viscous timescale for the inner disk of a stellar BH is ~1s.

Adopt simplistic spectral fitting: thermal component (ezdiskbb), nonthermal component (simpl), and absorption (tbabs)

> 1.5 million spectral fits required

One example

4 free parameters; 200 bins

Disk: kT, N Nontherm: Gamma, fsc

Fast spectral modeling

spin measurements applied

- First gravitational waveform computations with spin: (Campanelli+2006, Ajith 2011), and later GW limits: (Abbot+2016)
- How BHs are formed: (e.g., Woosley+2006, Fragos+2015)
- Tests of the no-hair theorem and GR: (e.g., Barausse+2011, Bambi+2012, 2015, Johannsen 2013,2016)
- Searching for string axions: (e.g., Arvanitaki+2015)
- Investigating how jets are powered: (e.g., Narayan & McClintock 2012, Fender+2010)

Jeff's BHs							
A complete description of 10!							
System	CF-Spin	M/M_{\Box}	Reference				
a.*							
Wind-Fed							
Cygnus X-1	> 0.98	15.8 ± 1.0	Gou+ 2013; Orosz+ 2011				
LMC X-1	0.92 ± 0.06	10.9 ± 1.4	Gou+ 2009; Orosz+ 2009				
M33 X-7	0.84 ± 0.05	15.7 ± 1.5	Liu+ 2008; Orosz+ 2007				
Transient							
GRS 1915+105	> 0.98	12.4 ± 1.9	McClintock+ 2006; Reid+ 2014				
GRO J1655-40	0.7 ± 0.1	6.3 ± 0.5	Shafee+ 2006; Greene+ 2001				
Nova Mus 1991	0.63 ± 0.18	11.0 ± 1.8	Chen+ 2016; Wu+ 2016				
4U 1543-47	0.45 ± 0.25	7.5 ± 1.1	Steiner+ 2018; Orosz+ 2018				
XTE J1550- 564	0.34 ± 0.25	9.1 ± 0.6	Steiner+ 2011; Orosz+ 2011				
IMC X-3	0.25 ± 0.15	7.0 + 0.3	Steiner+ 2014; Orosz+ 2014				

fin

Are "Massive" BHs a Distinct Class?

Wind fed systems:

- young (<Myr)
- highest mass BHs (>10)
- high spin (a* > 0.8)

Is this significant?

Black Hole	Spin a _* (CF)	Spin a _* (Fe K)	Principal References
Cyg X-1	> 0.98	> 0.9	Gou ea. 14; Tomsick ea. 14, Fabian ea. 12
GRS 1915+105	> 0.98	0.98 ± 0.01	McClintock ea. 2006; Miller ea. 2014
4U 1630-47		> 0.95	King ea. 2014
LMC X-1	0.92 ± 0.06	0.97 ^{+0.02} -0.25	Gou ea. 2009; Steiner ea. 2012
GX 339-4	< 0.9	0.93 ± 0.05	Reis ea. 2008; Kolehmainen & Done 2010
MAXI J1836-194		0.88 ± 0.05	Reis ea. 2012
M33 X-7	0.84 ± 0.05		Liu ea. 2008, 2010
4U 1543-47	$0.8 \pm 0.1^{*}$		Shafee ea. 2006 (also Morningstar ea. 14)
Swift J1753.5		0.76 ± 0.15	Reis ea. 2009
IC 10 X-1	>0.7		Steiner et al. 2016
XTE J1650-500		> 0.7	Walton ea. 2012
GRO J1655-40	$0.7 \pm 0.1^{*}$	> 0.9	Shafee ea. 2006; Reis ea. 2009
Nova Mus	~0.6 ± 0.2		Chen ea. 2015
XTE J1752-223		0.52 ± 0.11	Reis ea. 2010
XTE J1652-453		< 0.5	Heimstra ea. 2010, Chiang ea. 2012
XTE J1550-564	0.34 ± 0.28	0.55 ± 0.1	Steiner, Reis ea. 2011
LMC X-3	0.25± 0.15		Steiner ea. 2014
H1743-322	0.2 ± 0.3		Steiner & McClintock 2012
A0620-00	0.12 ± 0.19		Gou ea. 2010
M31 uQ	< -0.2		Middleton ea. 2014

Spin and

(Ballistic) Jets

Black Hole	Spin a _* (CF)	Spin a _* (Fe K)	Principal References
Cyg X-1	> 0.98	> 0.9	Gou ea. 14; Tomsick ea. 14, Fabian ea. 12
GRS 1915+105	> 0.98	0.98 ± 0.01	McClintock ea. 2006; Miller ea. 2014
4U 1630-47		> 0.95	King ea. 2014
LMC X-1	0.92 ± 0.06	$0.97^{+0.02}_{-0.25}$	Gou ea. 2009; Steiner ea. 2012
GX 339-4	< 0.9	0.93 ± 0.05	Reis ea. 2008; Kolehmainen & Done 2010
MAXI J1836-194		0.88 ± 0.05	Reis ea. 2012
M33 X-7	0.84 ± 0.05		Liu ea. 2008, 2010
4U 1543-47	$0.8 \pm 0.1^{*}$		Shafee ea. 2006 (also Morningstar ea. 14)
Swift J1753.5		0.76 ± 0.15	Reis ea. 2009
IC 10 X-1	>0.7		Steiner et al. 2016
XTE J1650-500		> 0.7	Walton ea. 2012
GRO J1655-40	$0.7 \pm 0.1^{*}$	> 0.9	Shafee ea. 2006; Reis ea. 2009
Nova Mus	~0.6 ± 0.2		Chen ea. 2015
XTE J1752-223		0.52 ± 0.11	Reis ea. 2010
XTE J1652-453		< 0.5	Heimstra ea. 2010, Chiang ea. 2012
XTE J1550-564	0.34 ± 0.28	0.55 ± 0.1	Steiner, Reis ea. 2011
LMC X-3	0.25± 0.15		Steiner ea. 2014
H1743-322	0.2 ± 0.3		Steiner & McClintock 2012
A0620-00	0.12 ± 0.19		Gou ea. 2010
M31 uQ	< -0.2		Middleton ea. 2014

A link between spin and jets

Steiner, McClintock, & Narayan 2013, Narayan & McClintock 2012

A link between spin and jets

Steiner, McClintock, & Narayan 2013, Narayan & McClintock 2012

XTE J1550-564: 1998 outburst

Supermassive BH analog

A sampling of FR IIs

van Velzen & Falcke 2013

The Distribution of SMBH spins

Brenneman (*SpringerBrief*, 2013)

Fundamental Physics

Steady-state spins in a string axiverse

Arvanitaki et al. 2011

Testing GR via the no-hair theorem

Johannsen & Psaltis 2011

(also, see related work by Nicolas Yunes, Clifford Will, Cosimo Bambi, Sarah Vigeland, and Scott Hughes)

Fe Lines in CPR

Simulations with 10⁶ counts (10⁴ in the line)

Jiang+2015

