X-ray news from RW Auriga

Optical dimming with iron rich plasma and an exceptional column density

Hans Moritz Günther

Massachusetts Institute of Technology

- Accretion on young stars
- Our target RW Aur
- What are we accreting? Insights from X-ray spectra.

How does a star evolve?

Artist: McCaughrean

Many components with different intrinsic time scales

Günther (2013)

Disk structure in T Tauri stars: Planet formation and migration

The best image of a disk we have: HL Tau (ALMA Partnership et al., 2015)

RW Aur and its surroundings

ALMA CO 2-1 first moment map

Rodriguez et al. (2018), ApJ 859, 150

Optical dimming is gray

Facchini et al. (2016)

Wind and accretion in optical lines

Facchini et al. (2016)

Chandra observations and lightcurve

Chandra observations and lightcurve

Chandra spectra: Vastly different every time we look

In the spectrum we observe: between 2013 and 2017 •emission at high energies multiplies •absorbing column density N_H increases from 1*10²¹ to 4*10²³ cm⁻²

•Fe abundance in corona increases from 0.5 to 15 times solar

Absorber

•Optical extinction is gray \rightarrow thick absorber or large grains •N_µ/A_∨ skyrockets: gas rich absorber? (or at least non-ISM grains)

Origin of the Fe rich dust grains

Summary

- N_H goes up by 400
- Fe abundance goes up by 30
- Need to accrete Fe rich material
- Limited knowledge of precursor of the Fe rich material

