The NICER-NuSTAR View of NS LMXBs

Copyright (C) 2005, by Fahad Sulehria, http://www.novacelestia.com.

Renee Ludlam [] rmludlam@umich.edu [] University of Michigan

Collaborators: J. M. Miller, M. Bachetti, D. Barret, E. M. Cackett, T. Dauser, N. Degenaar, A. C. Fabian, J. A. García, L. Natalucci, M. L. Parker, J. A. Tomsick, NICER bursts & accretion working group

Why Neutron Stars?

• Earth based laboratories are unable to replicate cold, ultradense matter

Equation of State

Why Study Disk Reflection in Neutron Stars?

- The disk must truncate at or prior to the NS surface
- Whether the radius of a NS is > or < their innermost stable circular orbit (ISCO) is not known
- If R_{NS} < ISCO, you obtain an angle on the EOS

 Additionally, can constrain properties of the disk and NS itself

X-ray Reflection

Fe Line Profile

Degree of broadening in the red wing directly correlates with proximity to compact object.

Broadening in the blue wing indicates inclination.

Fe Lines in Neutron Star Systems

- Pile-up skews Fe line profile
 - Falsely narrows line (Miller+ 2010)
 - Problem for determining NS radii and location of disk as a function of mass accretion rate (Done & Diaz Trigo 2010, Ng+ 2010)

NuSTAR: Nuclear Spectroscopic Telescope Array

- Launched: June 13th, 2012
- 2 Focal plane modules, 4 detector each composed of 32x32 pixels with individual readouts

Harrison+ 2013

NuSTAR gives us an unhindered view of the Fe line region

... and higher energy reflection feature

NICER: Neutron star Interior Composition ExploreR

- Launched on June 3rd, 2017
- 52 operational individual concentrating optics and silicon detectors

- Time resolution of 0.3 microseconds
 - 25x better than RXTE

- 85 eV @ 1 keV
- 137 eV @ 6 keV

Serpens X-1

- Source located 7.7⊕.0.9.9.000
 (Galloway + 2008)
- Inclination ≰rano°optical pridal
 sond come (Xstandises dices melisse+ 2023 An Miller+2013) Miller+2013)
- First NS source in which nelativistic lines were detected with XMM-Newton
 - 65.7 ks total exposure over three observations

Predictions of Reflection

The best fit reflection model from the *NuSTAR* data predicts a strong low-energy reflection component near 1 keV.

NICER Observations of Ser X-1

Ratio of data to the continuum model for <u>4.5 ks</u> of NICER exposure (black), <u>30.5 ks</u> of NuSTAR data (red), and <u>65.7 ks</u> of XMM-Newton/RGS data (blue, purple, & cyan).

Fe K Line with NICER

The predicted line profile (red) from the preliminary version of the fully selfconsistent reflection model RELXILLNS (Dauser, García, Ludlam+, in prep.).

- High density disk near 10¹⁹ cm⁻³
- Both the Fe XXV and Fe XXVI K alpha lines are produced at similar strength

This highlights energy resolution of NICER and the need to fit a reflection spectrum, not just a single line model.

Fe L Complex

- The Fe L complex with the best fit model predicted line profile (red) and the local-frame emission (blue) for comparison.
- Narrow emission lines in the broad Fe L region likely due to a lower-Z element such as Mg III-VII.

NICER's Collecting Area

- There is nearly 5 times more collecting area in the Fe L band than in the Fe K band.
- NICER captures ~ 1.34×10⁶ photons in the Fe L band and ~ 2.75×10⁵ photons in the Fe K band in just 4.5 ks.

Collecting Area of NICER & NuSTAR

Probes w/ Multiple Emission Lines

- Additional constraint on the position of the inner disk
- Disk structure
 - Ionization (ξ) with radius (R)
 - Illumination source geometry

Simultaneous NuSTAR & NICER data

Summary

- Fe lines are a valuable tool to learn about NS properties and provide a method to obtain upper limits on NS radii
- The combined passband of NICER and NuSTAR can reveal the entire reflection spectrum and shed light on accretion disk properties

Thank you!

Renee Ludlam: rmludlam@umich.edu University of Michigan

Inner Disk Radii with NuSTAR

• Eddington Fraction, F_{Edd}, is a proxy for mass accretion rate

(1) GX 349+2: Coughenour+ 2018; (2) Cyg X-2: Mondal+ 2018; (3) GX 17+2, 4U 1705-44, 4U 1636-53: Ludlam+ 2017a; (4) Ser X-1: Miller+ 2013; (5) 4U 1728-34: Sleator+ 2016; (6) GX 3+1, 4U 1702-429, 4U 0614+091: Ludlam+ 2018b, submitted; (7) MXB 1730-335: van den Eijnden+ 2017; (8) 1RXS J1804-34: Ludlam+ 2016, Degenaar+ 2016; (9) XTE J1709-267: Ludlam+ 2017b; (10) Aql X-1: Ludlam+ 2017c; (11) 4U 1608-52: Degenaar+ 2015; (12) IGR J17062-6143: van den Eijnden+ 2018

Possible Scenarios for Truncation

- Magnetospheric truncation?
- Boundary Layer?

- Magnetic fields estimated from Fe lines within truncated inner disk Black Points:
- AMXPs from Mukherjee+ 2015

Boundary Layer

- Region where the rapidly spinning accreting material reaches the slower spinning NS
- Gas cannot cool efficiently
 - Radiation pressure matters
- Vertically and/or radially extended

• Can't directly measure BL in the NuSTAR bandpass

Inner Disk Radii with NuSTAR

• Eddington Fraction, F_{Edd}, is a proxy for mass accretion rate

(1) GX 349+2: Coughenour+ 2018; (2) Cyg X-2: Mondal+ 2018; (3) GX 17+2, 4U 1705-44, 4U 1636-53: Ludlam+ 2017a; (4) Ser X-1: Miller+ 2013; (5) 4U 1728-34: Sleator+ 2016; (6) GX 3+1, 4U 1702-429, 4U 0614+091: Ludlam+ 2018b, submitted; (7) MXB 1730-335: van den Eijnden+ 2017; (8) 1RXS J1804-34: Ludlam+ 2016, Degenaar+ 2016; (9) XTE J1709-267: Ludlam+ 2017b; (10) Aql X-1: Ludlam+ 2017c; (11) 4U 1608-52: Degenaar+ 2015; (12) IGR J17062-6143: van den Eijnden+ 2018

Turning ISCO into Physical Units

GX 17+2: 0.05 ± 0.04 < a < 0.23 ± 0.12

Equation of State

Assuming M_{NS} = 1.4 M_{\odot}

Assuming M_{NS} = 1.4 M_{\odot}

Assuming M_{NS} = 1.5 M_{\odot}

Assuming M_{NS} = 2.0 M_{\odot}

Choice of Continuum

Fe line profiles for GX 349+2

Fe line profiles for a thermal blackbody continuum and Comptonization continuum.

Fe line profile independent of continuum choice!

Limits of the Test

- We <u>cannot</u> independently determine spin (a/M) and inner disk radius (R_{in})
- The potential at the ISCO around an a/M=0.0, and a few*ISCO around an a/M=0.X object, are fairly similar.

– i.e.,	R _g	a/M = 0.0	a/M=0.3	a/M=0.7
	6	1.0 ISCO	1.2 ISCO	1.7 ISCO

• We have to fix spin to likely values when determining the extent of the inner disk

Estimating Magnetic Field Strength

Magnetic energy density = kinetic energy density

$$\frac{B^2}{8\pi} = \frac{\dot{M}}{4\pi r^2} \left(\frac{2GM_{NS}}{r}\right)^{1/2}; \quad B = \frac{2\mu}{r^3}$$

$$\mu = \left(\frac{GM_{NS}}{2}\right)^{1/4} \dot{M}^{1/2} r^{7/4}; \ \dot{M} = \frac{4\pi D^2 F f_{ang}}{\eta c^2}; r = x \frac{GM_{NS}}{c^2}$$

$$\mu = 3.5 \times 10^{23} \left(\frac{x}{k_A}\right)^{7/4} \left(\frac{M_{NS}}{1.4 M_{\odot}}\right)^2 \left(\frac{f_{ang}}{\eta} \frac{F_{bol}}{10^{-9} \text{ erg cm}^{-2} \text{ s}^{-1}}\right)^{1/2} \frac{D}{3.5 \text{ kpc}} \text{ G cm}^3$$