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[11] Kopáček, O., Karas, V., Kunneriath, D., Hamerský, J.: Oblique magnetic fields and the role of frame dragging near rotating black hole, Acta Polytechnica, 54, 398,

2014 (arXiv:1408.2452)
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Conclusions
From our analysis we conclude that the motion of charged test particles in the off-equatorial lobes allowed by the test field of the rotating magnetic

dipole on the Schwarzschild background is largely regular. Once the specific energy Ẽ is increased (i.e. the off-equatorial lobe is extended) close

to the level where both lobes merge with each other, the chaos may appear. For even higher energies, the lobes merge and chaotic motion becomes

typical but, quite surprisingly, also very stable orbits exist under these circumstances.

Acceleration of the escaping particles changes with the spin as well as with the radius of original orbit. Maximally accelerated escaping orbit for

given value of qB corresponds to the highest allowed spin and the lowest radius of original orbit, i.e., is located in the upper left corner of the

escape zone in presented plots. The value of final Lorentz factor seems to saturate at γmax ≈ 6. Higher values of spin generally lead to more

accelerated escaping orbits.

We demonstrated that the recurrence plots and recurrence quantification analysis are simple, yet powerful tools which allow one not only to decide

whether the dynamic regime of the motion is regular or chaotic but also to locate (in terms of some control parameter – energy Ẽ in our case)

the transition between these regimes with very good precision. Major drawback (cost we pay for its simplicity) of RPs and RQA is the lack of

invariance (dependence on the threshold ε, lmin, choice of the norm etc.). We conclude that RPs themselves may act as an alternative tool to

Poincaré surfaces of section and RQA measures are able to detect the transitions between the dynamic regimes.

Recurrence plots and recurrence quantification analysis
Recurrence plots (RPs) as a tool to visualize recurrences of the trajectory in the phase space were introduced by Eckmann et al

in 1987 [7]. RP method is based on examination of the binary values that are constructed from the trajectory ~x(t). Construction

of RPs is simple and straightforward regardless of the dimension of the phase space which is a major advantage of this approach.

Binary values of the recurrence matrix Rij may be formally expressed as follows:

Rij(ε) = Θ(ε− ||~x(i)− ~x(j)||), i, j = 1, ..., N (6)

where ε is a predefined threshold parameter, Θ represents Heaviside step function and N specifies the sampling frequency which

is applied to the examined time period of the trajectory ~x(t). Selection of the norm ||.|| which should be used to detect recurrences

in the phase space is not straightforward. Although simple norms like L2 (Euclidean norm) are usually applied directly, we

want to reflect the curvature of the spacetime as much as possible. Thus we measure distances in the ZAMO’s hypersurfaces of

simultaneity following the standard 3 + 1 splitting procedure [8].

Binary valued matrix Rij represents the RP which we get by assigning a black dot where Rij = 1 and leaving a white dot where

Rij = 0. Both axis represent time period over which the data set (phase space vector) is examined. RP is thus symmetric and the

main diagonal is always occupied by the line of identity (LOI). Recurrence quantification analysis (RQA) [5] takes number of statis-

tic measures of recurrence matrix Rij. We adapted CRP ToolBox for Matlab (http://www.agnld.uni-potsdam.de/˜marwan/toolbox/)

to perform RQA computation.
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and Coherent Features in Accretion Disks around Compact Objects and Their Observational Signatures”.
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Fig. 4: We trace the trajectory of the test particle (q̃M = −5.71576 M 2, L̃ = 0.87643 M ) launched above the off-equatorial

potential minimum of type Ia (r(0) = 5 M , θ(0) = π/3 and ur = 0) at the energy level of Ẽ = 0.848. The trajectory exhibits

standard regular behaviour in the Poincaré surface of section (θsection = θ(0) = π/3). We distinguish uθ ≥ 0 (black point) from

uθ < 0 (red point) in the surface of section. In the third panel we observe the recurrence plot, which is dominated by diagonal

patterns as a general signature of regular motion. In the last panel from left the distance to the recurrence point is color-coded.

0 50 100 150 200 250 300 350 400 450 500
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

|qB|

γ  m
ax

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|qB|

a  m
ax

10
0

10
1

10
2

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

|qB|

r  m
ax

10
0

10
1

10
2

1

2

3

4

5

6

|qB|

r  m
ax

 / 
r +

Fig. 2: From left to right: a) Final Lorentz factor γmax of the maximally accelerated escaping orbit is shown as a function of

the magnetization parameter |qB|. Higher values of spin generally lead to more accelerated escaping orbits. b) The value of

spin amax corresponding to the maximally accelerated escaping orbit. Above the value |qB| ≈ 4.5 the escape of particles is only

permitted for a < 1 and the actual value of amax (which corresponds to the highest allowed value) falls steeply as |qB| increases.

c) The initial radius rmax of the maximally accelerated escaping orbit. d) The ratio rmax/r+ of the initial radius and the location

of the outer horizon corresponding to the maximally accelerated escaping orbit. Increasing the magnitude of the magnetization

parameter shifts the whole escape zone closer to the horizon.
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Fig. 3: Characterizing different families of particles that follow free (stable) circular trajectories (free-falling under ISCO) in the

Kerr spacetime. Magnetization and the particle charge are set to qB = −1 (top left panel) and −5 (top right panel), respectively.

Depending on the parameter values and the initial radius, a particle falls directly onto the horizon (blue), remains oscillating in

the equatorial plane (red), or it escapes to infinity along the symmetry axis (yellow). Black color denotes the outer horizon of the

black hole. The position of ISCO is indicated by the green line. Analysis of the asymptotic behavior shows that only particles

with qB < 0 can reach infinity. Even particles freely falling from the ISCO may still escape the attraction of the center. Further,

we also resolve the fine fractal structure of the escape zone in the case qB = −1 (bottom left panel), and the color-coded graph

of the terminal Lorentz factor with qB = −4 (bottom right panel; the color bar denotes the γ factor of the escaping particles).
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Fig. 1: A sketch of the model set-up. An exemplary trajectory (Ẽ = 1.058, L̃ = 5M ) has been launched from the black hole

equatorial plane θ(0) = π
2

with ur(0) = 0. An external magnetic test field has been imposed in the vertical direction. Parameters

of the background are a = 0.5M , q̃B0 = 0.1M−1, q̃Q̃ = 1.03. In the upper left panel we observe that setting r(0) = 8.4M
results in oscillations around the equatorial plane while launching it at r(0) = 8.7M makes it escape. In the upper middle panel

we examine the trajectory of the escaping particle in terms of the rescaled radial coordinate r∗ ≡ r−r+
r . In the case of oscillating

trajectories two distinct modes of motion are observed (upper right panel). The first particle (r(0) = 11.5M ) shows a complex

“ribbon-like” trajectory; the other one (r(0) = 8.4M ) fills uniformly the given portion of the potential valley. The Recurrence

Plots are also shown (bottom row). We observe a highly ordered regular pattern for the particle with r(0) = 8.4M (bottom

left panel), a more complicated diagonal pattern of the ribbon–like trajectory (launched at r(0) = 11.5M , middle panel), and a

disrupted diagonal pattern of the transitional trajectory (r(0) = 11.4M , bottom right panel).

Magnetized black hole: a non-rotating case
We describe the gravitational field outside a compact star by the Schwarzschild metric in a non-rotating case,

ds2 = −

(

1−
2M

r

)

dt2 +

(

1−
2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (3)

The associated magnetic field is modeled as a dipole rotating at angular velocity Ω [3]:

At = −ΩAφ =
3MΩR sin2 θ

8M 3
, Aφ = −

3MR sin2 θ

8M 3
, (4)

where M is the dipole moment and

R = 2M 2 + 2Mr + r2 log

(

1−
2M

r

)

. (5)

Alternatively, in order to describe the imposed magnetic field we assume a homogeneous (Wald’s) solution. Kerr metric is em-

ployed to describe the case of black hole with rotation.

Equations of motion and the effective potential: an axially symmetric case
The motion of the test matter (particles of charge q and mass m) is given by “super-Hamiltonian”

H = 1

2
gµν(πµ − qAµ)(πν − qAν), dxµ/dλ = ∂H/∂πµ, dπµ/dλ = −∂H/∂xµ, (1)

where πµ is the generalized (canonical) momentum and Aµ denotes the vector potential related to the electro-magnetic field tensor

as Fµν = Aν,µ − Aµ,ν, λ = τ/m is the affine parameter and τ the proper time.

The second Hamilton’s equation ensures that the momenta πt = pt + qAt ≡ −E, πφ = pφ + qAφ ≡ L represent constants of

motion, reflecting stationarity and axial symmetry of the considered background.

Numerical integration of the Hamilton’s equations eq. (1) is carried out using the multistep Adams-Bashforth-Moulton solver of

variable order. In several cases when higher accuracy is demanded we employ 7-8th order Dormand-Prince method. Initial values

of non-constant components of the canonical momentum πr(0) and πθ(0) are obtained from ur(0) (which we set) and uθ(0) which

is calculated from the normalization condition gµνuµuν = −1 where we always choose the non-negative root as a value of uθ(0).

Two-dimensional (i.e. related to the motion in two coordinates, r and θ) effective potential ca be expressed as follows:

Veff(r, θ; q̃M, L̃, Ω) = −
3q̃MRΩ sin2 θ

8M 3
+

(

1−
2M

r

)
1
2



1 +

(

L̃

r sin θ
+
3q̃MR sin θ

8M 3r

)2




1
2

, (2)

where we introduce specific quantities L̃ ≡ L/m and q̃ ≡ q/m. M is the magnetic dipole moment, Ω is the angular velocity of

the rigidly co-rotating magnetosphere, and R is defined by eq. (5).

Introduction
We explore the mechanism of particle acceleration from an inner accretion disc near a black hole into a compact corona, and

further out. To this end we assume the case of an organised magnetic field near a supermassive black hole [1, 2]. The set-up of

our model is relevant also from another angle: exploring the dynamical properties of the particle motion near magnetised black

hole or a compact star [3]. We employ the method of Recurrence Plots and we compare them with Poincare surfaces of section.

We describe the Recurrence Plots in terms of the Recurrence Quantification Analysis, which allows us to identify the transition

between different dynamical regimes of regular vs. chaotic motion [5]. This new technique is able to detect the chaos onset very

efficiently, and to provide its quantitative measure. We find that the role of the black-hole spin in setting chaos is more complicated

than initially thought. We discuss appropriate ways of characterizing regularity and the degree of chaotic motion in GR [11].

Our picture includes generic building blocks of astrophysically realistic galactic nuclei. On sub-parsec scales, a supermassive

black hole is surrounded by a dense Nuclear Star-Cluster and its gaseous environment [12]. The three components are in mutual

interaction, which leads to interesting effects. We focus our attention to the possibility of acceleration of electrically charged

particles in potential valleys and near magnetic null points that can develop, under suitable circumstances, within the interacting

magnetosphere of the black hole – star system. Previously, we investigated the motion of the charged test particles around a

Schwarzschild body with the rotating dipole magnetic field frozen in rigidly co-rotating magnetospheric plasma. This field allows

motion in the off-equatorial lobes for suitably selected values of parameters of the system [4].

We examine a mechanism of destabilisation of equatorial orbits of electrically charged particles and dust grains. Near a magnetised black hole, initially bound charges can be accelerated along

trajectories emerging from an accretion disk that eventually may escape in the vertical direction. A fraction of these trajectories exhibit chaotic behaviour; even for large-scale, ordered magnetic fields

it appears that the chaotic dynamics controls the outflow. We employ Recurrence Plots to characterize the onset of chaos in the medium. The role of black hole spin and the magnetic field strength are

discussed, and the maximal escape velocity is computed (based on a recent paper, Kopáček & Karas 2018, ApJ, 853, id. 53, 2018; arXiv:1801.01576).
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