Cross-Calibration of Chandra with XMM-Newton

Herman L. Marshall
Chandra X-ray Center
Contributors

- **Chandra X-ray Center**
 - Coordinated observations: Marshall, Drake
 - ACIS QE: Edgar, Grant, Plucinsky
 - ACIS Contamination: Plucinsky, Marshall, Grant, Vikhlinen, others
 - HRC-ACIS: Drake, Wargelin, Marshall
 - LETG-HETG: Marshall, Wargelin

- **XMM-Newton**
 - Coordinated observations: Kirsch, Pollack
 - EPIC PN: Haberl
 - RGS-PN-MOS comparison: Kirsch, Pollack
 - RGS: den Herder
Coordination Efforts

• Ongoing cross-calibration observations
 • Observing 3C 273 and PKS 2155-304 once per year
 • XMM is “on-call” to coordinate with Chandra bakeout

• Face-face meetings
 • HLM met with Jan Willem den Herder and RGS scientists in July 2002
 • Marcus Kirsch and Andrew Pollack attended the Chandra Calibration workshop in October 2003
 • HLM meeting with Kirsch and Pollack in June 2004 cancelled due to airline delays

• Other communication
 • XMM cal presentations passed along to Cal group
 • Kirsch is spearheading coordination for XMM

Cross-Calibration
Chandra Internal Cross-Calibration

• First tried with 3C 273 in January 2000 using LETG/HRC, LETG/ACIS, HETG/ACIS
 • Effect of contaminant first found — -70% at 288 eV
 • BI/FI QE discrepancy first noted — -15% at 600 eV
 • Also obs’d by ASCA, RXTE — Agree to <10% (1-8 keV)
• Contaminant is still under scrutiny
 • Edges known but continuum absorption is uncertain
 • Time dependence found in 2002 is well characterized
 • Spatial dependence found in 2003
 • More observations planned for July 2004
• BI/FI issues may be solved
 • BI QE has been revised — in testing
 • FI QE affected by cosmic rays residuals
Chandra Internal Cross-Cal: Methods

- BI QE compared to FI QE
 - LETGS and HETGS comparison of +1 against -1
 - Use spectral fitting of SN and galaxy clusters
 - Reanalyze XRCF data

- HEG compared to MEG
 - Use any bright target (without pileup)
 - Compare after correcting for BI/FI

- ACIS-S compared to HRC-S
 - Use back-back LETGS observations of PKS 2155-304
 - Update high order efficiencies using LETG/ACIS

- LETGS compared to HETGS
 - Use back-back observations of 3C 273, PKS 2155-304
 - Renormalize due to variability via XMM, XTE, or ASCA
All observations are simultaneous, so many targets are used
- N-stars and blazars are good for checking RGS and PN
- More extended sources can be used than in Chandra cal
- Several modes and filters are alternated

Pileup is important in bright point sources
- Imaging mode: do not use core of PSF
- Timing mode: no pileup but not often used

Technique: fit jointly, allow normalizations to vary by instrument

XMM-Newton Internal Cross-Calibration
• PN results (timing mode, by Haberl)
 - Still some residuals at 0.5 keV of ± 5%
 - Thin and thick filters do not yet agree

• PN — MOS — RGS
 • MOS require -17 to +15% adjustment relative to PN
 • RGS require -27 to -9% adjustment

• Features remain in fits
 • PN: Si-K and Au-M edges appear in residuals
 • MOS: low E response seems to be time-dependent
 • PN: RMF requires adjustments below 1 keV
Cross-normalization

<table>
<thead>
<tr>
<th>Target</th>
<th>Rev.</th>
<th>Class</th>
<th>Pile-up</th>
<th>const</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>pn</td>
<td>MOS1</td>
</tr>
<tr>
<td>PKS2155-304</td>
<td>545</td>
<td>AGN</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PKS0558-504</td>
<td>153</td>
<td>AGN</td>
<td>no</td>
<td>mild?</td>
</tr>
<tr>
<td>RXJ0806</td>
<td>168</td>
<td>INS</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>RXJ0720</td>
<td>533</td>
<td>INS</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>AB Dor</td>
<td>266</td>
<td>Stars</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>zeta Puppis</td>
<td>542</td>
<td>Stars</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>1E0102-7219</td>
<td>447</td>
<td>SNR</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>A1689</td>
<td>374</td>
<td>Cluster</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>A2052</td>
<td>128</td>
<td>Cluster</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
features in relative calibration

- MOS low energy problem evolving with time

- The old fellows for RGS and EPIC
 - Si-edge
 - Au-edge

- pn-redistribution problem

Cross-Calibration
Other XMM Results

Figure 1-16: 3C 273: blue: PN black: MOS1, red: MOS2. Expressed as a ratio, DATA/MODEL, with error bars removed for clarity.

Figure 1-17: Simultaneous spectral fits to PKS0558-508. Back: pn, red: MOS1, green: MOS2 and blue RGS1, light blue RGS2. The zoomed ratio (lower panel) has been binned more for clarity.
Upcoming Milestones

• July-August 2004
 • Complete/revise contaminant spectral model
 • Complete testing of BI QE and FI CR loss models
 • XMM: internal cross-cal meeting

• September 2004
 • Test/revise MEG-HEG efficiencies
 • Verify HETG-LETG cross-cal
 • Iterate XMM-Chandra cross-cal (PN, RGS — TGs)

• October 2004
 • Distribute reports
 • Chandra Calibration workshop

• Bakeout in September?