Chandra Calibration Status

CUC Meeting Oct. 23, 2014

Chandra Calibration Status

- Calibration updates since the 2013 CUC meeting
- Current calibration studies
- Internal cross-calibration results
- Calibration plans for the upcoming year

Calibration products released over the past year

ACIS

- Quarterly gain corrections for ACIS-I and ACIS-S
- Updated contamination models in Dec. 2013 and July 2014
- Posted a memo on the analysis of CC-mode data

HRC

- Yearly gain maps for the HRC-I and HRC-S
- Yearly QE maps for the HRC-S
- Yearly HRC-I background image and spectrum

Data acquired through 2013 fit with the CALDB 4.5.9 version of the ACIS contamination model released in Nov. 2013.

Data through June 2014

Model 9981 was released in CALDB 4.6.2 in July 2014 which included an adjustment to the time-dependence only.

LETG/ACIS-S Observations of Mkn 421

Big Dither (Mar. 14)

ACIS Temperatures

Focal Plane

Camera Body

Temperature-dependent CTI correction

ACIS-S3

-116 < T < -115

S3 at warm temperatures

Temperature-dependent CTI correction

ACIS-I3

-116 < T < -115

13 at warm temperatures

ACIS low energy gain (E < 500 eV)

Influence of Thermal Changes on Chandra Imaging

Influence of Thermal Changes on Chandra Imaging

A thermal gradient of approximately 1 degree F is required to product a measurable distortion in the PSF. The current thermal gradient is 0.2 degrees F across the CAP and increasing at a rate of 0.05 degrees F per year. Thus, it is unlikely that the thermal gradient across the CAP will have a noticeable affect is less than a decade.

LETG/HRC-S Effective Area

Essentially a linear decline in broad band count rate

Fluxes are derived using the set of HRC-S QE maps in CALDB 4.6.3

LETG/HRC-S observations of HZ43

LETG/HRC-S Effective Area

The rate of QE decline varies with order, but is nearly wavelength-independent for wavelengths longer than 140A.

An updated set of HRC-S QE maps will be released by the end of 2014. These will be wavelength-independent corrections. The next release will include wavelength-dependent QE corrections.

HRC-S - ACIS-S Cross-calibration

Interleaved LETG+(ACIS-S,HRC-S) observations of blazar Mkn 421

- Scale HRC-S flux to achieve minimum light curve "length"
- Five series of interleaved data combined ==> HRC-S QE needs downward revision of 7+/-1.5%

Internal cross-calibration

HRC-I Effective Area

Calibration Schedule

- Release revised ACIS contamination model with updated elemental ratios (C,O and F), spatial distribution and time-dependence.
- Generate test versions of the ACIS contamination model with different spatial gradients for each element in the contaminant.
- Investigate the spectral resolution of ACIS at warmer temperatures.
- Release updated gain tables for the BI chips with improved gains at low energies (E < 500 eV).
- · Release updated OSIP for LETG/ACIS-S data consistent with the updated gain table.
- Release a set of time-dependent HRC-S QE maps (one for each year).
- · Release a revised QE for the HRC-S.
- Determine if an adjustment to the first order transmission efficiency of the LETG is required.
- Determine if adjustments to the first order transmission efficiencies of the HEG and MEG are required.
- Release a separate QE file for CC-mode ACIS data (mostly HETG/ACIS-S) for data taken prior to the telemetry of flight grade 66. This will increase the flux in such data by about 3% at wavelengths shorter than 3A
- Investigate the small decline in HRC-I QE.