AGN physics and evolution in the next decade

Andrea Comastri

INAF-Osservatorio Astronomico di Bologna

Giorgio Lanzuisi, Marcella Brusa, Alberto Masini, Fabio Vito, Nico Cappelluti, Roberto Gilli, Cristian Vignali, Francesca Civano, Fabrizio Fiore, ...

INAF- Osservatorio Astronomico di Bologna

AGN Science highlights

Light up and early evolution of SMBH

- progenitors: heavy vs light seeds
- re-ionization: QSOs or galaxies?
- where and how the first BH forms and grow

Onset and the evolution of the M_{BH} vs Host properties

- The role and the nature of obscuration

Perspectives for future Chandra observations in the next decade...Athena and X-ray Surveyor in the 30s

The challenge of the first Quasars

z > 6 QSO imply masses > 10⁹ M_{sun} already in place when the Universe was ~ 1 Gyr old

$$M(t) = M_0 e^{f_{\rm Edd} \frac{t}{\tau} \frac{1-\epsilon}{\epsilon}} \quad t_{\rm acc} = 0.45 \text{ Gyr} \frac{\epsilon}{1-\epsilon} f_{\rm Edd}^{-1} \ln(M_{\rm fin}/M_{\rm in})$$

SMBH at high redshifts

Time Problem: right combination of seeds masses and accretion rates PopIII remnants M_{BH} ~100-500 M_{sun} or DCBH M_{BH} ~10³-10⁶ M_{sun}

i.e. Loeb&Rasio04; Volonteri+12; Madau&Rees01; ...

Examples of high-z XLF predicted by models with light and heavy seeds

Hirschmann+12; Triangles - SDSS converted to X-ray , rhombi Fiore+12 Volonteri; Menci; Granato; Shankar; Hopkins; Di Matteo; Springel;

Need to push towards low luminosity and high-z

Tuesday, August 16, 16

Evolution at z > 3

Brusa+09, Civano+11, Hiroi+12; Vito+14, Kalfountzou+14 Georgakakis+15, Ueda+14, Miyaji+15, Aird +15, Ikeda+11; Glikman+11, Masters+12, ...

z > 6

Beyond detection I

Search for X-ray emitting sources using optical NIR priors and photo-z from Candels (i.e. Dahlen+13;Giallongo+15)

Two z > 6 X-ray sources are consistent with the theoretical spectrum expected by Direct Collapse Black Holes (Pacucci+16) Extremely red colors and obscured-Compton thick X-ray spectrum

Beyond detection II

Candels catalogue + adaptive X-ray detection: 22 faint AGN candidates are identified in CDFS (Giallongo+15)

violating the soft XRB limits (i.e. Madau&Haardt15)

Beyond detection III

The number of high-z AGN may be significantly lower detection algorithm; counterpart association; photo-z code robustness, etc etc

Lessons from $z \sim 3.3$

Tracks of M_{BH} and L_{BOL} traced back to $z\sim 20$ assuming simple prescriptions for accretion efficiency and Eddington rate.

Need Massive BH at very high-z to reproduce observed/measured masses Relatively luminous quasars at z~5-7 are within the limits of current surveys but not detected (I in Stripe 82 La Massa+I6) OBSCURATION ?? - Lower efficiency?? ...

Beyond detection: Stacking

				•
z bin	mass sample	N	$\langle z^w \rangle$	Effective Exposure
$3.5 \le z < 4.5$	all	1393	3.90	$8.16 imes10^9{ m s}$ ${\sim}260~{ m yr}$
$3.5 \le z < 4.5$	massive	662	3.91	$3.86 imes10^9{ m s}\sim\!\!120$ yr
$4.5 \le z < 5.5$	all	453	4.90	$2.65 imes10^9{ m s}$ ${\sim}85$ yr
$4.5 \le z < 5.5$	massive	217	4.92	$1.26 imes10^9{ m s}$ ${\sim}40~{ m yr}$
$5.5 \le z < 6.5$	all	230	5.93	$1.35 imes10^9{ m s}$ ${\sim}43~{ m yr}$
$5.5 \le z < 6.5$	massive	111	5.93	$0.65 imes10^9{ m s}$ ${\sim}20$ yr

X-ray emission from galaxies?

X-ray emission in high-z galaxies consistent with an origin due to SF processes (Binaries, gas,...) assuming the SFR-L_X relation calibrated at lower redshifts

Accretion luminosity in undetected AGN provides a negligible contribution

The environment of z~6 QSOs

According to simulations SMBH at z ~ 6 form only in overdense regions

Overdensities might extend up to 30 arcmin from central QSOs (Overzier+09)

need wide field LBC@LBT and HSC@ Subaru

Chandra LP (500 ks ACIS-I) on J1030 Scheduled Jan 2017 - 4th deepest survey to date - PI R. Gilli

Tuesday, August 16, 16

Obscuration and joint SMBH/Host evolution

Obscuration and joint SMBH/Host evolution

Tuesday, August 16, 16

AGN vs Host

Heavy absorption associated to merger disturbed morphology and host compactness (two modes of accretion?)

Molecular gas supply is a key parameter in driving SF and AGN feedback. IR and X-rays to probe gas and dust obscuration

Tuesday, August 16, 16

Obscured AGN fraction at high-z

The Fraction of obscured QSOs increase with z and is luminosity dependent

@z>3 half of the objects are heavily obscured $\log N_H > 23$

At high-z galaxies are more compact and gas rich, likely denser ISM and host galaxy absorption?

La Franca+05, Treister & Urry 06, Iwasawa+12, Ueda+14

XID 403 @ z~4.76

The absorption may be due to host ISM for solar metallicities

Chandra Surveys

The history of SMBH growth with ATHENA

Tuesday, August 16, 16

The history of SMBH growth with ATHENA

Tuesday, August 16, 16

Survey Sensitivities

Survey Sensitivities

Lessons learned & Perspectives Chandra 2016-2026

The science cases of high-z universe and BH-Host co-evolution could be addressed with a 10-15 Ms time survey

Increase the area by an order of mag at fluxes where z~6 AGN should be found. JWST and ALMA "follow-up" for robust spectroscopic identification

Relatively large sample of "representative" heavily obscured AGN, Need full multi-wavelength coverage from radio to X-rays. Origin of the obscurer and BH vs Host properties relations.

COSMOS Legacy, CDFS/XSERVS, Stripe82 or "Overdense" z~6 QSOs fields are excellent starting points.