The Unique Power of Chandra Observations of Gravitationally Lensed Quasars

David Pooley Trinity University dpooley@trinity.edu

Paul Schechter (MIT) Saul Rappaport (MIT)

PG 1115+080 X-rays, optical, and lens model

DP et al. 2008

Stronger X-ray anomalies are nearly universal, indicating microlensing is the cause.

Microlensing-induced variations diminish by $\frac{1}{2}$ when source size ~ $\frac{1}{3}$ lens size.

Mortonson, Schechter, & Wambsganss 2005

Optical RMS is roughly ¹/₂ the X-ray RMS. Optical region must be ¹/₃ size of the microlensing star.

This is not a single-star effect!

These two realizations of the stars in a ~60 microarcsecond field lensing a background quasar show all of the micro-images that go into forming one of the four macro images of the quasar.

The only difference is the position of the background quasar relative to the stars.

Magnification factor: ~5

Magnification factor: ~2

see Paczynski 1986

This is not a single-star effect!

Microlensing magnification maps represent the effects of this "network" of microlensing stars.

Analysis of magnification maps gives probability of strong microlensing effects.

1% stars

1.00

Magnification (relative to average)

0.10

0.01

100.00

0.01

0.10

1.00

Magnification (relative to average)

10.00

10.00

10% stars **100% stars** Magnification (relative to average) Magnification (relative to average) Magnification (relative to average) < 0.20 0.33 0.50 2 3 > 5 < 0.20 0.33 0.50 2 3 > 5 < 0.20 0.33 0.50 2 3 > 5 1 1 1 0.05 0.10 0.15 0.04 0.08 Relative Frequency Relative Frequency Relative Frequency 0.03 0.06 0.10 0.02 0.04 0.05 0.01 0.02 0.00 0.00 0.00

100.00

0.01

0.10

1.00

Magnification (relative to average)

100.00

10.00

Ensemble of quads indicates 93% dark matter at $\langle R \rangle = 6.6$ kpc

DP et al. 2012

Stellar Mass Density (M/L Ratio)

Knowing the overall mass density (from the lensing model) and the amount of mass in stars, one can estimate the stellar mass density.

We characterize this as a calibration factor that multiplies the stellar mass fundamental plane

- 1. The discovery of new lensed quasars in large-area optical surveys will provide additional targets for *Chandra*, improving the ensemble results.
 - Size of optical region DM fraction / stellar mass density

VST-ATLAS discovery of WISE 2344-3056 as a quadruply lensed quasar.

Schechter et al. 2016

Fig. 2.— Left: A 60s i exposure of WISE 2344-3056 taken with IMACS in 0".55 seeing. Right: the same exposure, with four point sources subtracted, at 10 times higher contrast. The scale is 0".200 per pixel

credit: Luke Weisenbach, MIT '18

 The dark matter fractions / stellar mass densities can be obtained for individual systems through repeated observations spaced by ~years. These would yield "independent" likelihood histograms, which could be combined in a way similar to the ensemble results.

DP et al. 2012

3. Dense sampling of caustic crossings can reveal the detailed structure of the X-ray emitting region.

DP et al. 2008

3. Dense sampling of caustic crossings can reveal the detailed structure of the X-ray emitting region.

Likely caustic crossing in HE 0230–2130

DP et al. in prep

3. Dense sampling of caustic crossings can reveal the detailed structure of the X-ray emitting region.

3. Dense sampling of caustic crossings can reveal the detailed structure of the X-ray emitting region.

Illustrative example from planetary microlensing shows effects of increasing source size.

Large anomalies were seen in the X-ray images.

Blackburne, DP, & Rappaport 2006

These "flux ratio anomalies" were known in the optical for decades, but the explanation was unclear (*milli*lensing vs. *micro*lensing).

An optical emitting region that was large compared to the lens size was investigated by Schechter & Wambsganss (2004).

Improved X-ray data reduction gives more precise measurement.

Use dithering of satellite

Use Sub-pixel Event Resolution Position of an event is based on how charge cloud is split amongst neighboring pixels.

We calculate the optical *R*_{1/2} for Shakura-Sunyaev disks and compare to the microlens Einstein radii:

Quasar	$L_{bol opt}^{a}_{HE 0230-2130}_{(10^{45} \text{ erg s}^{-1})}$	$L_{bol,X}^{b}$ (10 ⁴⁵ erg s ⁻¹)	$\log M_{\rm BH}^{\rm c}$ (M_{\odot})	$r_{1/2}^{d}$ (10 ¹⁵ cm)	$r_{1/2}^{d}$ (R_g)	stellar $r_{\rm Ein}^{\rm e}$ (10 ¹⁵ cm)	$\log r_{1/2}/r_{\rm Ein}$
HE 0230-2130	MG J0414+0534 2.9	6.3	7.95 ± 0.24	0.93	70	43	-1.66 ± 0.16
MG J0414+0534	RX J0911+0551	28	9.04 ± 0.17	3 .8	23	31	-0.91 ± 0.11
RX J0911+0551	SDSS 19924+02	19 13	8.60 ± 0.18	1.9	32	35	-1.26 ± 0.12
SDSS J0924+0219	0.6	0.3	7.27 ± 0.56	0.42	152	48	-2.06 ± 0.37
PG 1115+080	PG 1115+080	6.6	8.53 ± 0.37	2.5	50	55	-1.35 ± 0.25
RX J1131–1231	RX JQ18Q -1231	1.3	7 .39± 0.19	0.84	230	₩ 38	-1.65 ± 0.13
H 1413+117	56	6.5	9.24 ± 0.51	5.4		~	• • •
B 1422+231	$H^{1413+117}_{250}$	135	9.89 ± 0.18	13	11	47	-0.55 ± 0.12
WFI J2033-4723	B 142 5 +7231	3.8	8.24 ± 0.12	1.6		- 36	-1.35 ± 0.08
Q 2237+0305	32 WFI 12033-4723	2.7	8.99 ± 0.76	5.5	38	150	-1.43 ± 0.51

Probability of strong microlensing

effects depends on dark/stellar ratio Microlensing map histograms Convolved with measured F_X Custom microlensing maps are made for each system for a variety of dark/stellar ratios. Strong demagnifications are unlikely for very $h_{ig}^{i} = H_{ig}^{HV} 00^{6}$ and very $l_{0008}^{i} = H_{ig}^{i} = H_{$

Stellar fraction decreases with $\langle R \rangle$ as expected

The larger the size of the source, the more the lensing effects are diminished

Possible caustic crossing is seen in PG 1115+080

DP et al. 2008

Probability of microlensing depends on dark/stellar ratio

Custom microlensing maps are made for each system for a variety of dark/stellar ratios. Strong demagnifications are unlikely for very high (100%) and very low (1%) stellar fractions.

10% Stars

Magnification (relative to average)

100% Stars

Magnification (relative to average)

< 0.20	0.33	0.50	1	2	3	> 5

Multiply distributions to form joint P(*F*_X)

Marginalize over *F*_X to obtain likelihood of stellar fraction

Improved X-ray image modeling gives more precise measurement

β profile: $I(r) = A(1 + (r/r_0)^2)^{-\beta}$

DP et al. 2007

Galaxy Mass Profiles from (SLACS)

Gavazzi et al. 2007

The Sizes of Quasar Emission Regions

We calculate $R_{1/2}$ according to: $\frac{\int_{r_0}^{r_{1/2}} \left[e^{h\nu(1+z)/kT(r)} - 1 \right]^{-1} r dr}{\int_{r_0}^{\infty} \left[e^{h\nu(1+z)/kT(r)} - 1 \right]^{-1} r dr} = \frac{1}{2}$

using a Shakura-Sunyaev model: $T(r) = \left[\frac{3GM_{\rm BH}\dot{M}}{8\pi\sigma r^3}\right]^{1/4} \left(1 - \sqrt{r_0/r}\right)^{1/4}$

Estimate L_{Bol} using $9[\lambda F_{\lambda}]_{5100}4\pi D_{L}^{2}$ Kaspi et al. 2000

Take $L_{BOI}/L_{Edd} \equiv f_E = 0.25$ Kollmeier et al. 2006

Take radiative efficiency $\eta = 0.15$ Yu & Tremaine 2002 $\rightarrow a = 0.88$ and $r_0 \approx 2.5 R_g$ Assumptions: How does choice of η and f_E affect $R_{1/2}$?

*Can use $T(\mathbf{r})$ to find radius where $T/(1+z) = h\mathbf{v}/k_{\rm B}$ To good approximation, this radius $\propto R_{1/2}$ *Neglecting the factor of $(1 - \sqrt{r_0/r})^{1/4}$ in T(r), we find $R_{1/2} \propto (M_{\rm BH} \dot{M})^{1/3}$

*Since $M_{\text{BH}} \propto L_{\text{bol}}/f_{\text{E}}$ and $\dot{M} \propto L_{\text{bol}}/\eta$ $\Rightarrow R_{1/2} \propto (f_{\text{E}} \eta)^{-1/3}$