Stripe 82X: A Wide-Area X-ray Survey in a Legacy Field

Stephanie LaMassa

Meg Urry, Eilat Glikman, Gordon Richards, Nico Cappelluti, Andrea Comastri, Hans Boehringer, Francesca Civano, + Stripe82X Team

Goals of Stripe 82X

- Uncover how obscured high-L AGN evolve
- Disentangle signatures of black hole growth & star formation
- Study large scale environments hosting AGN
- Search for direct collapse black holes

Importance of Wide Area Surveys

- Only way to discover rare objects, e.g. high-L & high-z
 AGN
 - Signal when majority of mass accreted on SMBHs occurs Hopkins & Hernquist 2009, Treister+ 2012
 - Key players in galaxy evolution Glikman+ 2012,2013; Banerji+
 2013, 2015; Stern+ 2014; Assef+ 2015
- Large angular scales needed to measure unresolved
 X-ray emission: signatures of z > 6 SMBHs

SDSS Stripe 82 Legacy Field 300 deg²

High level of spectroscopic completeness

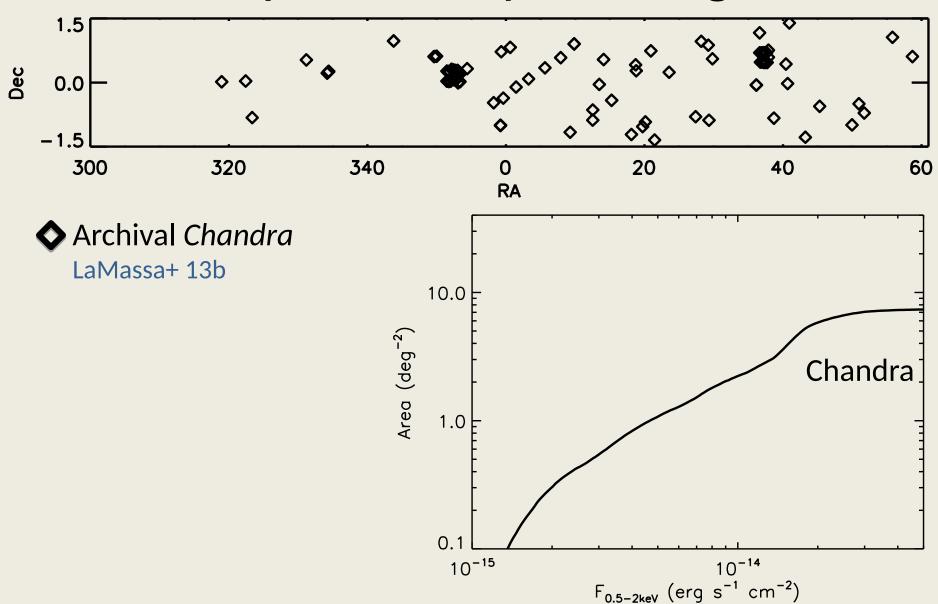
```
30%— SDSS, 2SLAQ, WiggleZ, DEEP2, PRIMUS, HETDEX
```

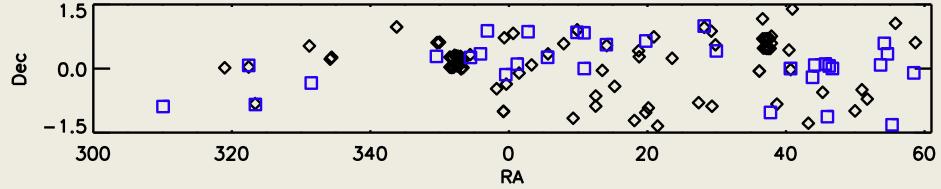
- >50%— targeted follow-up eBOSS, WIYN, Palomar, Keck
 - Tons of λλλ coverage

ACT 300 deg²

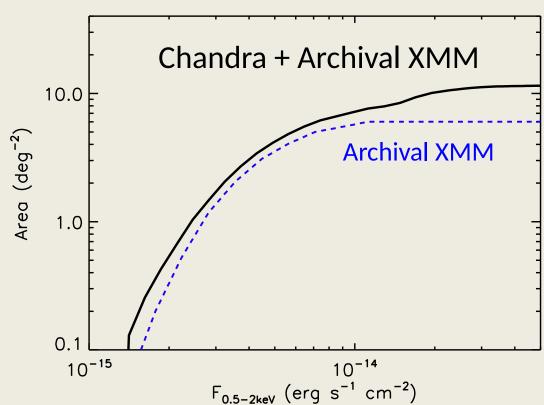
Radio 300 deg²

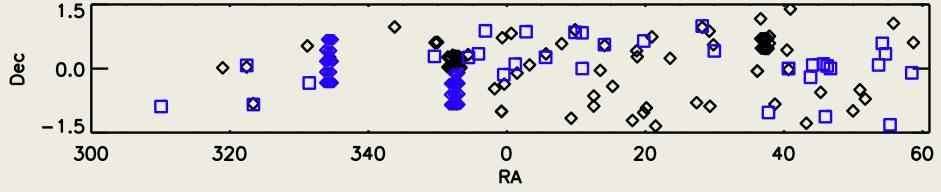
Ultraviolet 300 deg²

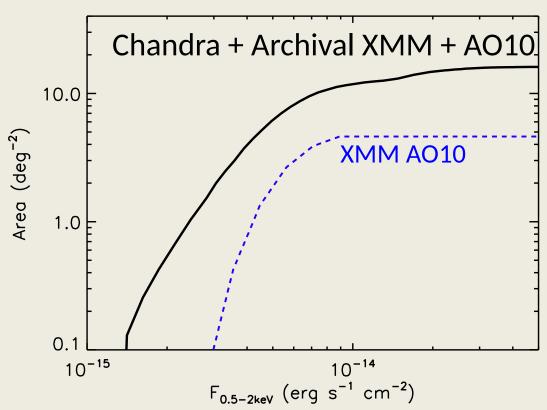

Deep optical ($r \sim 26$) 300 deg²

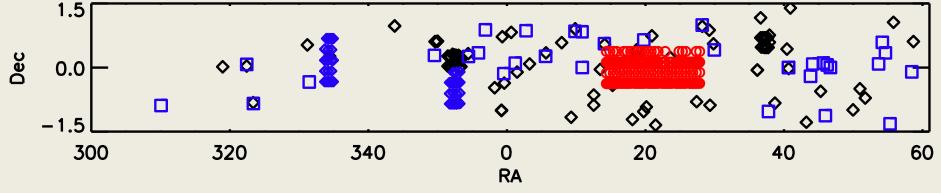

NIR (UKIDSS & VHS) 300 deg²

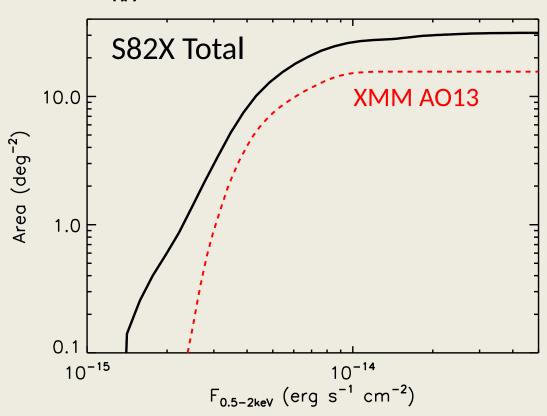
Spitzer 143 deg²


Herschel 112 deg²


- archival Chandra 7.4 deg²
- + archival XMM-Newton 6.0 deg²
- + AO10 XMM-Newton 4.6 deg²
- + AO13 XMM-Newton 15.6 deg²




- Archival Chandra
 LaMassa+ 13b
- Archival XMM LaMassa+ 13c

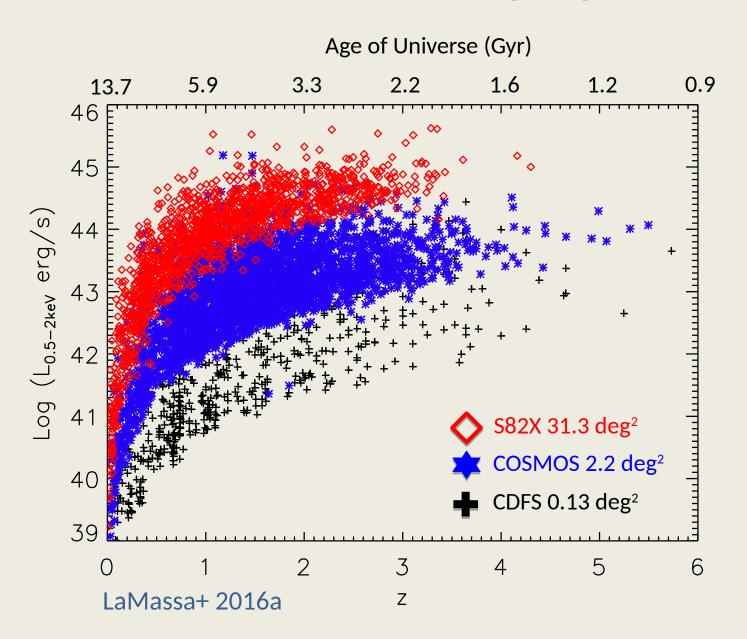


- Archival Chandra
 LaMassa+ 13b
- Archival XMM LaMassa+ 13c
- XMM AO10 LaMassa+ 13c

- Archival Chandra
 LaMassa+ 13b
- Archival XMM LaMassa+ 13c
- XMM AO10 LaMassa+ 13c
- XMM AO13 LaMassa+ 16a

Stripe 82 X-ray Survey Summary

Survey	# of Sources	Area
		(\mathbf{deg}^2)
Archival Chandra	1146	7.4
Archival XMM	1607	6.0
$XMM \mathbf{AO10}$	751	4.6
$XMM \mathbf{AO13}$	2862	15.6
Total	6181	31.3

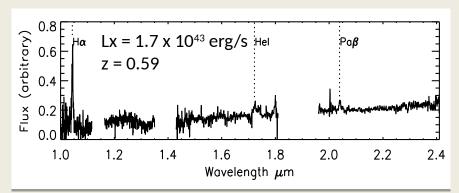

LaMassa+ 2016a

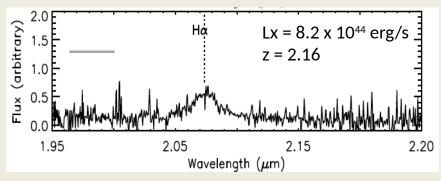
λλλ Counterparts to S82X Sources via Maximum Likelihood Estimator

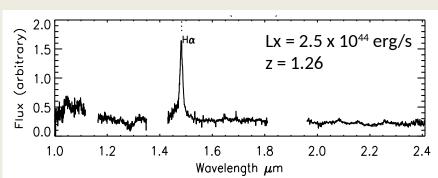
	Survey	Number
81%	Survey Optical (SDSS)	5009
65%	\mathbf{MIR} ($WISE$)	4006
72%	NIR (UKIDSS) NIR (VHS)	3643
/ 2 / 0	NIR (VHS)	4093
	$\mathbf{FIR}\ (\mathit{Herschel})$	133
17%	\mathbf{UV} (GALEX)	1080
4%	Radio (FIRST)	232
30%	Redshifts	1841

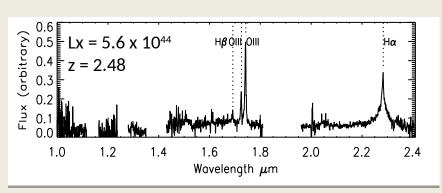
LaMassa+ 2016a

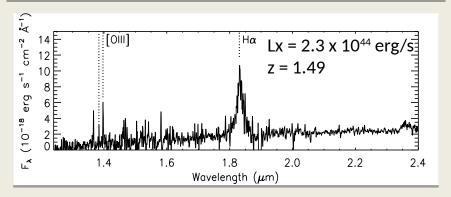
Distance v. Luminosity by Survey




Discover missing links in SMBH growth


- Explore color diagnostics to hone target selection for future missions: R-W1 LaMassa+ 2016b
 - Available over most of sky (SDSS, Pan-STARRS, WISE)
 - -R-W1 > 4 recovers obscured AGN z > 0.5
- Follow-up obscured AGN candidates LaMassa+ in prep
 - Keck NIRSPEC (2013-2015), Palomar TSpec (2014-2015), Gemini GNIRS (2015)


Unveiling Hidden Black Hole Growth


LaMassa+ in prep

Summary

- Address gap in census of SMBH growth with Stripe 82X
 - 31.3 deg²: 6186 X-ray sources *LaMassa*+ 13b,c,16a
- Upcoming science highlights
 - photo-z catalog Ananna+ in prep
 - Understanding AGN triggering via clustering Cappelluti+ in prep
 - Search for signatures of z > 6 SMBHs Cappelluti+ in prep
- Increase area to 100 deg²
 - Chandra competitive w/ XMM for wide-area surveys
 - -z > 3, $L_x > 10^{45}$ AGN/galaxy co-evolution
 - best constraints on black holes in the early Universe until
 Athena

Reference

Wavelength	Survey	Reference
UV	GALEX - 300 deg ² ; $m_{\rm fuv} \sim 23.5 \; (AB)$	Morissey+ 2007
Optical	SDSS - coadd: 300 deg ² ; $r \sim 24.6$ (AB)	Annis+ 2014, Jiang+ 2014
	CFHT: 140 deg^2 ; $i \sim 23.5 \text{ (AB)}$	PI: A. Leauthaud
	Subaru HSC: 270 deg ² ; $r \sim 26$ (AB)	Miyazaki+ 2012
	DES: $300 \text{ deg}^2 \text{ deg}^2$; $r \sim 25.1 \text{ (AB)}$	astro-ph/0510346
	PanSTARRS: 300 deg ² ; $r \sim 21.6$ (AB)	Kaiser+ 2010
	Spectroscopy: SDSS, BOSS, eBOSS, WiggleZ,	Ahn+ 2012, 2014, Drinkwater+ 2010,
	PRIMUS, DEEP2, 2SLAQ, 6dF, VIMOS VLT Deep	Coil+ 2011, Newman+ 2013,Croom+
	Survey (VVDS); 30% coverage of Stripe 82-XMM	2009, Jones+ 2009, Garilli+ 2008
	sources	
NIR	UKIDSS - LAS: 300 deg^2 ; K $\sim 20.3 \text{ (AB)}$	Hewett+ 2006, Lawrence+ 2007
	VHS: 300 deg^2 ; $K \sim 20 \text{ (AB)}$	McMahon+ 2013
\mathbf{MIR}	Spitzer - SpIES: 115 deg ² ; [3.6] μ m - 21.9 (AB)	PI: G. Richards; Timlin+ $subm.$ to ApJ
	Spitzer - SHELA: 28 deg^2 ; $[3.6]\mu\text{m}$ - 22.8 (AB)	PI: C. Papovich
\mathbf{FIR}	$Herschel - 112 \text{ deg}^2$; $250\mu\text{m} - 13 \text{ mJy beam}^{-1}$	Oliver+ 2012, Viero+ 2014
Millimeter	ACT/ACTPol: 300 deg ² ; 148, 218, 277 GHz; 2,3,7	Fowler+ 2007; Swetz+ 2011; Niemack+
	mJy	2010
Radio	FIRST (1.4 GHz) : 300 deg^2 ; $0.75\text{-}1 \text{ mJy}$	Becker+ 1995; Helfand+ 2015
	VLA-L (1.4 GHz): 92 \deg^2 ; 52 μ Jy	Hodge+ 2011
	VLA-B (3 GHz): 270 deg^2 ; $40\mu \text{Jy}$	Mooley+ 2016
	VLA-C (1-2 GHz): 70 deg^2 ; $40\text{-}50\mu\text{Jy}$	PI: M. Jarvis