Discovering Spatially Offset Active Galactic Nuclei, HLXs and IMBH Candidates with *Chandra*

R. Scott Barrows

Postdoctoral Research Associate Center for Astrophysics and Space Astronomy University of Colorado Boulder

Collaborators:

Julie Comerford (CU Boulder), Jenny Greene (Princeton), Dave Pooley (Trinity Univ.)

The role of galaxy mergers for growing massive black holes

Comerford et al. 2015, ApJ, 806, 219

Major mergers of massive galaxies: Accreting SMBHs (Mass=10⁶-10⁹M_{Sun})

Farrell et al. 2009, Nat., 460, 73

Minor merger: Accreting IMBH? (Mass=10³-10⁶M_{Sun})

Techniques for building samples of galaxy mergers:

Visually ("by-eye")

Kocevski et al. 2012, ApJ, 744, 148

Villforth et al. 2014, MNRAS, 439, 3342

(a) (b)

Silverman et al. 2014, ApJ, 743, 2

Asymmetry

Pairs of distinct galaxies

Techniques for building samples of galaxy mergers:

Visually ("by-eye")

Asymmetry

Kocevski et al. 2012, ApJ, 744, 148

Villforth et al. 2014, MNRAS, 439, 3342

Pairs of distinct galaxies

Silverman et al. 2014, ApJ, 743, 2

Unambiguous galaxy mergers: Spatially Offset AGN

Optical Emission Lines

SDSS Seyfert 2 Spectrum

Unambiguous galaxy mergers: Spatially Offset AGN

Optical Emission Lines

X-ray Spectra

SDSS Seyfert 2 Spectrum

Select AGN from SDSS using BPT diagram at z<0.21:

Crossmatch with footprint of *Chandra* archives:

Register Chandra image with at least SDSS i- or z-band:

20,098 ↓ 2,292 ↓ 150 Select AGN from SDSS using BPT diagram at z<0.21:

Crossmatch with footprint of *Chandra* archives:

Register Chandra image with at least SDSS i- or z-band:

Chandra, 2-10 keV

Hard X-ray source:

- within SDSS fiber
- L_{X,2-10}>10⁴² erg s⁻¹ (AGN)

Select AGN from SDSS using BPT diagram at z<0.21:

Crossmatch with footprint of *Chandra* archives:

Register Chandra image with at least SDSS i- or z-band:

Chandra, 2-10 keV

SDSS z-band

Hard X-ray source:

- within SDSS fiber
- $L_{X,2-10}$ >10⁴² erg s⁻¹ (AGN)

X-ray AGN significantly (>3σ) spatially offset:

9

Chandra Science: Galaxy Merger Stage

Satyapal et al. 2014, MNRAS, 441, 1297

AGN merger fraction inversely correlated with separation

Mergers selected as galaxy pairs down to (>5 kpc)

Chandra Science: Galaxy Merger Stage

Satyapal et al. 2014, MNRAS, 441, 1297

AGN merger fraction inversely correlated with separation

Mergers selected as galaxy pairs down to (>5 kpc)

Barrows et al. in prep

Mergers selected as spatially offset AGN (<0.8 kpc)

Consistent with simulations: AGN observability in mergers peaks at <1 kpc

Chandra Science: Merger Mass Ratio

Are offset AGN preferentially found in major or minor mergers?

Chandra Science: Merger Mass Ratio

Are offset AGN preferentially found in major or minor mergers?

 $M_1/M_2=3.07$ (major-ish)

HST/WFC3 F160W+F814W+F438W

Chandra Science: Merger Mass Ratio

HST/WFC3 F160W+F814W+F438W

Conclusions:

With *Chandra* we can...

identify galaxy mergers via X-ray AGN with *reliable* spatial offsets:
 Systematic catalogue of spatially offset AGN

identify mergers down to stages of <1 kpc:
 merger stages when AGN activity (is predicted) peak

identify galaxy mergers independent of morphology:
→major and minor mergers

Soon: systematic catalogue of 300 HLXs candidates and 21 IMBH candidates (Barrows et al. *in prep)*