Understanding the evolution of stellar X-ray activity in time

Cecilia Garraffo

Harvard-Smithsonian CfA

Stellar Activity-Rotation X-ray to bolometric luminosity ratio

Rotation Evolution of Sun-Like Stars

Rotation Evolution of Sun-Like Stars

Rotation Evolution of Sun-Like Stars

Rotation Evolution of Sun-Like Stars What is missing?

Garraffo et al., ApJL 2015 CXO - 8/17/16

Rotation Evolution of Sun-Like Stars What is missing?

Longitude [Deg]

Garraffo et al., ApJL 2015 CXO - 8/17/16

Analytic Morphology Term: Scaling Laws

Garraffo et al., 2016

Morphology in Time

V447 Lac (257 Myr; 4.43 d)
 BD-16 351 (27 Myr; 3.21 d)

O20-(

$$
\text { HII } 739 \text { (125 Myr; } 1.58 \mathrm{~d})
$$

DX Leo (257 Myr; 5.38 d)

TYC 0486-4943-1 ($120 \mathrm{Myr} ; 3.75 \mathrm{~d}$)

PELS 031 (125 Myr; 2.5 d)
80
40
0
-40
-80

V439 And (257 Myr; 6.23)

HII 296 (125 Myr; 2.61 d)

Morphology in Time

Morphology in Time

Metcalfe et al., 2016

Morphology in Time Explaining CV period gap?

Morphology in Time

$$
\begin{gathered}
\dot{J}=\dot{J}_{D_{i p}} Q_{J}(n), \quad Q_{J}(n)=4.05 e^{-1.4 n}+\frac{(n-1)}{(60 n B)} \\
n(t)=?
\end{gathered}
$$

Garraffo et al. in prep.
work in progress...

$$
\dot{J}=\dot{J}(t) \quad P_{r o t}=P_{r o t}(t)
$$

Morphology in Time

$$
\begin{gathered}
\dot{J}=\dot{J}_{D i p} Q_{J}(n), \quad Q_{J}(n)=4.05 e^{-1.4 n}+\frac{(n-1)}{(60 n B)} \\
n(t)=?
\end{gathered}
$$

$$
\dot{J}=\dot{J}(t) \quad P_{\text {rot }}=P_{\text {rot }}(t) \quad R_{X}=R_{X}(t)
$$

Future Work

Synthetic X-ray populations

$$
\begin{aligned}
N & =N(\text { age }, m, d i s t) \\
R_{X} & =R_{X}(\text { age }, s t)
\end{aligned}
$$

Chandra Archive Observations

Thank you!

Conclusions

- Large scale magnetic morphology explains deviations from gyrochronology at early and late ages
- Based on 73 simulations we derived analytical expressions to estimate mass, angular momentum loss rates, and changes in Xray activity based on total magnetic flux and magnetic complexity.
- We can use observations of open clusters to infer the magnetic morphology and X-ray evolution with time.
- We plan to use X-ray evolution with time to produce synthetic Xray populations and compare with Chandra Archival Observations.

Backup Slides

Morphology in Time Explaining CV period gap?

Morphology in Time Explaining CV period gap?

Morphology in Time Explaining CV period gap?

X-ray Activity in Time

Garraffo et al. in prep.

Morphology in Time

Van Saders et al., Nature, 2016
$R_{0} \sim 2$
Metcalfe et al., 2016

Garraffo et al. in prep.

Excess of young yellow stars in our neighborhood, ROSAT NEP survey.
Micela et al., 2007.

Rotation Evolution of Sun-Like Stars

Figure from Jeffries 2014, adapted from Gallet \& Bouvier 2013

Rotation Evolution of Sun-Like Stars

Bimodal distribution among these populations

Figure from Brown 2014, data from Meibom et al. 2009, 2011
Brown proposes MDM unified spin-down scenario with a coupling constant that can take two values depending on the mode: strongly or weakly coupled to the stellar wind: $d J / d t=K_{M} \Omega^{3} f^{2}(B-V)_{\mathrm{xo}}-8 / 17 / 16$

Rotation Evolution of Sun-Like Stars

 Bimodal distribution among these populations

Analytic Morphology Term: Scaling Laws

Rotation Evolution of Sun-Like Stars Application to Real Stars

Garraffo et al., 2016, in Press

$$
n_{a v}=\sum_{n=0}^{n_{\max }} \frac{n F_{n}}{F_{T}}
$$

$$
n_{a v}=\sum_{n=0}^{n_{\text {max }}} \frac{n F_{n}}{F_{T}}
$$

Garraffo et al., 2016, in Press

$$
n=5
$$

$$
000000
$$

Rotation Evolution of Sun-Like Stars

We can in principle use magnetic maps to infer the winds responsible for the angular momentum loss.

ZDI magnetic map for V2129 Oph

1. Is the resolution of the available observations good enough?

Rotation Evolution of Sun-Like Stars

We can in principle use magnetic maps to infer the winds responsible for the angular momentum loss.

Solar magnetic map

1. Is the resolution of the available observations good enough?
2. Do active regions affect angular momentum loss?

Rotation Evolution of Sun-Like Stars

We can in principle use magnetic maps to infer the winds responsible for the angular momentum loss.

AB Doradus

1. Is the resolution of the available observations good enough?
2. Do active regions affect angular momentum loss?
3. How much does large scale morphology matter?

Rotation Evolution of Sun-Like Stars

BATS-R-US (U. of Michigan) 3D MHD code, see Ofer Cohen's poster 268
magnetic map

Rotation Evolution of Sun-Like Stars

1. Is the resolution of the available observations good enough?

Garraffo et al. 2013

Wind structure

Rotation Evolution of Sun-Like Stars

 2. Do active regions affect angular momentum loss?

Rotation Evolution of Sun-Like Stars 2. Do active regions affect angular momentum loss?

Garraffo et al. ApJ 2015

Rotation Evolution of Sun-Like Stars

 2. Do active regions affect angular momentum loss?
"We examined the complexity of the reconstructed large scale magnetic field, by considering the magnetic energy in all spherical harmonic modes with $1 \leq 2$. This includes dipolar and quadrupolar modes, and their corresponding toroidal modes. We find a trend towards decreasing complexity with increasing rotation period, illustrated in Fig 8, and a similar trend with increasing Rossby number. Thus it may be that faster rotators, with stronger dynamos, have more complex magnetic fields. This is in contrast to the fully convective T Tauri stars that often have simple magnetic field geometries." Folsom et al. 2016.
"Below Ro $\simeq 1$, stars more massive than $0.5 \mathrm{M} \odot$ succeed at producing a substantial (and sometimes even dominant) toroidal component with a mostly non-axisymmetric poloidal component." Donati \& Landstreet 2009
"Table 4 shows that in all epochs both the poloidal and toroidal magnetic fields are very complex with over 50 percent of the magnetic energy in orders higher than an octupole (except for the poloidal magnetic energy in 2009 which has only 45 per cent of the magnetic energy in orders higher than an octupole)." HD 141943, Marsden et al. 2011.
"Like HD 171488 , this field is quite complex and much more than that operating the Sun." Waite et al 2011.

Rotation Evolution of Sun-Like Stars

Figure from Jeffries 2014, adapted from Gallet \& Bouvier 2013

Rotation Evolution of Sun-Like Stars

Rotation Evolution of Sun-Like Stars 2. Do active regions affect angular momentum loss?

Magnetic Morphology

Garraffo et al., ApJL 2015
Legendre Polynomials orthogonality: $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 n+1} \delta_{m n}$
Normalization factor: $\sqrt{2 /(2 \cdot 1+1)} / \sqrt{2 /(2 \cdot n+1)}=\sqrt{(2 \cdot n+1) / 3}$

Magnetic Morphology

- Mass loss and spin down rates rapidly suppressed
- Mass loss becomes more homogeneously distributed over latitude
- Alfven surface gets smaller, magnetic flux decreases as $1 / r^{n+1}$

Magnetic Morphology

Garraffo et al., ApJL 2015

- Similar to the coupling constant proposed by Brown:

$$
\frac{d J / d t_{d i p}}{d J / d t_{\text {multi }}}=\frac{K_{M_{1}}}{K_{M_{0}}}>100
$$

