Heating the Intracluster Medium Through AGN Feedback

S. W. Randall (CfA)

P. Nulsen, W. Forman, C. Jones, T. Clarke, E. Churazov, R. Kraft, & E. Blanton

What is Feedback?

- Output from AGNs/stars regulates the cooling rate and distribution of the diffuse gas that forms/fuels them
- Has implications for star formation rates; the evolution of galaxies, groups, and clusters; black hole growth; and the growth of large scale structure
- Must be included in cosmological simulations to reproduce the observed universe (e.g., Illustris; Nelson+15)
- Solution to the "cooling flow problem"

The Feedback Cycle

AGN Kinetic Feedback

- There is feedback from stars (galactic winds) and AGN (both kinetic and radiative mode)
- Here we focus on kinetic mode AGN feedback in central SMBHs (local universe, radiative power negligible, accreting at 1–10% Eddington)
- AGN jets inflate cavities in the ICM filled with radio plasma, cavity inflation drives shocks, cavities rise buoyantly

Cavities and Shocks

August 16-19, 2016, Cambridge, MA

Forman+07

Chandra Science for the Next Decade

Finoguenov+08

S.W. Randall

McNamara+05

Estimate P_{cav} as cavity enthalpy divided by cavity lifetime

Correlation with cavity power and cooling luminosity over six orders of magnitude, and out to Z~0.7 (Birzan+04; Rafferty+06; Nulsen+07; Hlavacek-Larrondo+12)

Fabian 12

How Does the AGN Heat the ICM?

- There is generally enough energy output by central AGN to heat the ICM and balance radiative cooling, but how is this energy deposited in the ICM?
- Suggestions include turbulence, mixing with cavities, and weak shocks (Churazov+02; Soker+05; Fabian+06; Nulsen+07; Randall+11; Zuravleva+14; Hillel+16;...)
- Likely many or all of these mechanisms play a role

Turbulent Heating

 Assume density (surface brightness) fluctuations scale linearly with turbulent velocity

- Balances well with cooling rate in the few objects looked at (Zuravleva+14)
- All fluctuations over some range of scales are attributed to turbulence

Zhuravleva+14

Shock Heating

- Shocks should be there from cavity inflation
- Expect a total shock energy similar to cavities
- Basic shock physics is well understood
- Shocks will naturally heat the ICM isotropically, and more strongly near the AGN, as required for feedback
- Shocks are directly observable

650 ksec image, Randall+15

NGC 5813

- Three pairs of collinear cavities and associated concentric surface brightness edges from three *distinct* outbursts of the central AGN
- Regular morphology, apparently in a "steady state" feedback mode, with relatively little IGM "weather"

- Nearby, good for resolving shock edges
- Particularly well suited to the study of AGN feedback

Central and intermediate shocks

Central and intermediate shocks

Shock Structure

- All surface brightness edges are well-modeled by a discontinuous power law density model:
 - Core shocks (1 kpc): $\rho_1 / \rho_2 = 1.97$, M = 1.71
 - Middle shocks (10 kpc): $\rho_1 / \rho_2 = 1.74$, M = 1.52
 - Outer shocks (30 kpc): $\rho_1 / \rho_2 = 1.44$, M = 1.30
- Heating occurs due to entropy jump across shock fronts. "Replaces" only 1–9% of the total thermal energy, but shocks are repeated, and there are several per local cooling time (repetition time is roughly 20 Myr from shock separations)

Shocks Alone Balance Cooling

	t _{cool} [yr]	shocks/t _{cool}	shocks required
~1 kpc shock	2 × 10	10	10
~10 kpc shock	9 x 10	45	20
~30 kpc shock	2 x 10	100	77

 How many shocks are needed per local cooling time to offset radiative cooling?

- Agreement is remarkably good for rough estimates
- Even though shocks are weak, repetition rate is much shorter than the cooling time

Outburst shock detections are rare...

August 16-19, 2016, Cambridge, MA

Chandra Science for the Next Decade

Need to measure temperatures to discriminate shocks from cold fronts

Forman+05,07; Nulsen+07; Million+10; Arevalo+16

August 16-19, 2016, Cambridge, MA

Chandra Science for the Next Decade

- Inner shock is difficult to disentangle, easier for outer shock at 14 kpc
- M≈1.3 (Million+10), which requires 77 shocks per cooling time, or a repetition time of 12 Myr
- Million+10 find t_{rep}≈10 Myr, consistent with shock heating balancing cooling, as found previously (Nulsen+07, Million+10)

August 16-19, 2016, Cambridge, MA

Abell 2052

Blanton+11,+09

Abell 2052

- Temperature jump at 30 kpc edge is only evident after deprojection (note that outer edge is likely a cold front!)
- M≈1.2, requiring a repetition time of ~2 Myr

Blanton+11

Conclusion

- Heating from repeated weak outburst shocks is sufficient to offset radiative cooling in at least a few cases where current data allow measurements, within a few tens of kpc
- Shock heating is likely to generally play an important role in AGN feedback, particularly at smaller radii
- Unfortunately, weak outburst shocks are difficult to detect

The Next 10 Years...

1) More data

 Need more detections. How does the heating rate and mechanism vary with cluster mass, black hole mass, AGN kinetic luminosity, radius, even redshift?

- Chandra's angular resolution is required to resolve shocks
- Observations are expensive. Note that each of the above detections (N5813, M87, A2052) is from >0.5 Msec observations

The Next 10 Years...

2) Synergy

 Multi-wavelength observations to track star formation rates and trace the cooling gas over many orders of magnitude in temperature

- Low frequency radio to follow the evolution of cavities and non-thermal particles
- Surveys to identify new targets
- HST, LOFAR, JWST, eROSITA, Planck, SPT, ALMA...
- See work by M. McDonald, H. Russell, G. Tremblay, L. David, and others...

The Next 10 Years...

- Chandra's next decade will likely require very long observations to achieve some key science goals. How can we fairly accommodate such requests?
 - Combine observations with similar science?
 - Community chosen targets?
 - Bring back XVPs?
 - Expand the scope of multi-cycle projects?

Beyond the Next 10 Years...

X-ray Surveyor will be very good at this kind of science
Each of these observations represents ~650 ks with Chandra

 XRS will achieve this with 10–20 ks exposures, with subarcsecond resolution across a much wider FOV