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Radiation Emission from Accreting 
Black Holes   

• Accretion onto Black Holes proceeds with the 
formation of accretion disks.

• Their structure, still not well understood, 
relies on comparison of models with 
observed features. 

• The ubiquitous spectral features of these 
objects comprise:
– A multicolor disk component consistent with 

themal emission by an accretion disk that extends 
to ~100  R_S.

– X-ray emission, presumably by a corona.
– Broad (and Narrow) emission lines consistent with 

isotropic velocity of the emitting gas.
– Blue-shifted absorption lines indicating OUTFLOWS 

(not accretion !!!).
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Outflows are Ubiquitous in 
AGN

(originally discovered in their UV 
spectra) 
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X-ray Absorbers 
 Chandra  and XMM-Newton  discovered a host 
of absorption features in the X-ray band of wide 
ionization state and velocities, hinting of much 
richer wind structures than thought before. 

    (1) Moderate Outflows ~ various charge state
        (~100-1,000 km/sec; NH ~1021-22 cm-2)
         Many charge state from X-ray-bright AGNs
           e.g. MCG-6-30-15, IRAS 13349+2438
    (2) Fast Outflows ~ K-shell resonance 
        (v/c~0.1-0.7; NH ~1023-24 cm-2)
         H/He-like ions from hard-X-ray-weak AGNs
             e.g. PDS 456, PG 1211+143, APM 
08279+5255
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X-ray-Bright AGNs
  QSO: IRAS 13349+2438:
  (z = 0.10764)

  X-ray bright, 
  IR-loud/radio-quiet QSO
  X-ray obs. with ROSAT, 
  ASCA, Chandra, XMM-Newton
 
  Ions with various charge state
  Fe XVII ~ 300 km/sec
  Fe XXV ~ 3000 km/sec 
  Integrated NH ~ 1.2x1022 cm-2 

 Absorption  lines are characterized by
Their ionization state (ξ=L/nr^2), velocity v
and column NH .

 Importance of X-ray Spectroscopy:
In 1.5 decades of E covers transitions
That span 5 decades in ξ

Chandra data
Holczer+(07) 9



Narrow-Line Seyferts
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PG 1211+143

Pounds+Reeves(09)

PDS 456

Reeves+(09)

 “Narrow” Hline < 2,000 km/sec
 Weak O III/Hratio
 Strong “Soft X-ray Excess”
 Highly-blueshifted absorption lines 

PG 0844+349

Pounds+(03)

(v/c ~ 0.2)

(v/c ~ 0.25)

(v/c ~ 0.1)

Chandra/XMM-Newton data
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Galactic Black Hole Candidates 
(GBHC)
GRO J1655-40:•  High ionization: log([erg cm s-1]) ~ 4.5 - 5.4

•  Small radii: log (r[cm]) ~ 9.0 - 9.4
•  High density: log(n[cm-3]) ~ 14

Chandra Data
Miller+(08)

•  M(BH)~7Msun
•  M(2nd)~2.3Msun

NASA/CXC/A.Hobart

Miller+(06)
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Can we make sense of all these diverse 
Observations?

Fundamental Questions:

 Geometry?
 Spatial location?
 Properties?
 Physical origin?
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Holczer+(07)

ionization

Behar(09)

AMD = dNH / dlog ~ 
(log)p

column

column

ionization

Absorption Measure 
Distribution    
               (AMD) 

(5 AGNs)

 presence of nearly equal NH over ~4 decades in  (p~0.02)

where  = L/(n r2)

(0.02 < p < 0.29)
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v

ξ

ΝΗ

Schematic run of v, ξ, ΝΗ, for radiation driven outflow
V~r, n(r) ~1/r3, NH~ 1/r2  then  V~ const, n(r) ~1/r2, NH~ 

1/r 

r

r

r

Low V, low ξ
High V, high ξ

Ν decreases with ξ
Ν decreases with V
Ν independent of V,ξ



Some Simple Estimates/Conclusions
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Not  n~1/r2 !!

1/21/2212 rrrrvnrM  


Mdot not constant! (ADIOS
Blandford . Begelman 1999) 

The flow is 2 dimensional! (Blandford+Payne 82, Contopoulos
and Lovelace 94  AGN Unification: Torus = MHD Wind) 

Mdot ~ r1/2,  Edot ~ Mdot v2~r-1/2,  Pdot ~ Mdot v ~ r0



Flow line geometry
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Contopoulos + Lovelace (94) 



With the above density scaling we get the following relation 
for ξ
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 ξ is independent of the mass M of the BH!!. The models are 
equally well applicable to AGN and galactic XRBs.
Their difference lies in the fraction of the bolometric emission 
that comprise the X-rays.
The larger the X-ray content the more ionized the high V 
segments of the wind and the lower the absorber velocities.
BAL QSOs: V ~ 10,000 – 100,000 km/s
GRO J1655-40: V ~ 300-1200 km/s



• Basic Dogma:

• All winds have the same velocity (v~1/r1/2) and 
density (n~1/r) all the way to ~ (a few) ISCO

• Their overall normalization is given by mdot at 
r ~ 1

• The observed diversity is due to their 
ionization status and the observer’s 
inclination angle. 

• The X-ray contribution to their spectra most 
important for the appearance of their spectral 
/ kinematic structure (broad-narrow lines 
hi-low ξ)
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The velocities and size of the winds measured in v/c 
and r/RS scale  directly from those of AGN to those of 
XRBs.



Magnetically-Driven 
Outflows
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Magnetohydrodynamics (MHD) 

(At least) 2 candidates:

 GRO J1655-40
     Miller+(06,08)

 NGC 4151
     Kraemer+(05)
     Crenshaw+Kraemer(07)
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Simple Wind Solutions with 
n~1/r

Density

Launc
h 
site

Assume:
M(BH) = 106 Msun,  ~ 2 (single power-law),  LX ~ 1042 erg/s,  
mdot ~ 0.5,  rad. ef. ~ 10%,  n(in) ~ 1010 cm-3

(Fukumura+10a)

Poloidal
velocity

Toroidal
velocity

[cm-3]

(q=1)
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Simple Wind Solutions with 
n~1/r

Launc
h 
site

Assume:
M(BH) = 106 Msun,  ~ 2 (single power-law),  LX ~ 1042 erg/s,  
mdot ~ 0.5,  rad. ef. ~ 10%,  n(in) ~ 1010 cm-3

(Fukumura+10a)

Poloidal
velocity

Toroidal
velocity

[cm-3]

(q=1)
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Photoionization with XSTAR (e.g. 
Kallman+Bautista01) 

LoS Radiation 
Transfer

1D computational 
zones 

Ionization
Distribution LoS

Radiation 
Source

[cm-3]

Density
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Modeling Absorption 
Spectra

Wind optical depth

Line photo-absorption cross-section

fij = oscillator strength
 
D = broadening factor 

H(a,u) = Voigt function

(e.g. Mihalas78)

We need not use the
Parameter vturb of 
XSTAR; we use the 
Velocity gradient of 
The wind. 



PG 1211+143

10/28/2010 SEAL@GSFC 35



10/28/2010 SEAL@GSFC 36



10/28/2010 SEAL@GSFC 38

n ~ 1/r1.2

Θ =80 deg
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Development of the Fe XXVI 
Lyα and Ne Χ Lyα  profiles
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Summary

MHD disk-winds provide a promising unified account of the entire 
absorber phenomenology. This can serve a basic benchmark for 
further development and refinenent.

 Key ingredients  mdot  (overall column normalization) 
                                 SED (, mainly OX)
                                  (Inclination angle) 
(these are not all independent parameters – correlation of  L-OX

The model implies that AGN and XRB winds are multiscale 
objects, governed (basically)  by magnetic forces. 

 An instrument with higher throughput and resolution  
would be able to probe also the detailed velocity 
structure  of these features and their variability to 
provide the density – velocity structure of the entire AGN 
flow. (Hitomi 2 ?  Athena )



 THE END 

Thank you 
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