
# High-mass X-ray Binaries in star-forming galaxies

#### Stefano Mineo

Harvard-Smithsonian Center for Astrophysics

Marat Gilfanov<sup>2,3</sup>, Rashid Sunyaev<sup>2,3</sup>, Pepi Fabbiano<sup>1</sup>

(1-Harvard-Smithsonian Center for Astrophysics, 2-Max Planck Institute for Astrophysics, 3-Space Research Institute of Russian Academy of Sciences)



## Science goals

 L<sub>X</sub>-SFR relation HMXBs, diffuse gas and total emission

2MASS

HMXB luminosity function

Galex

NUV (2312 Å) FUV (1529 Å)

Chandra

0.5-8 keV

multiwavelength study of archival data

FIR 70µm 24µm NIR 2.16µm

Spitzer

## Sample selection criteria

- Hubble type: late-type only (S and Irr)  $\Rightarrow$  star-forming
- Specific SFR:  $\frac{\rm SFR}{M_{\star}} > 10^{-10} \, \rm yr^{-1} \Rightarrow HMXB \ dominated$

 $\tau_{HMXB} \sim 10-50 \text{ Myr} \Rightarrow N_{HMXB} \propto SFR \text{ (Grimm, Gilfanov & Sunyaev 2003)}$ 

 $T_{LMXB} \sim I - I0 \text{ Gyr} \Rightarrow N_{LMXB} \sim M_{\bigstar} \text{ (Gilfanov 2004)}$ 

- Exposure time:  $t_{exp} \ge 15 \text{ ks}$
- Distance: Resolved galaxies:

D < 40 Mpc, discriminate AGN, low SFR,  $L_{TOT} = \Sigma L_i \Rightarrow 29$  galaxies

Unresolved galaxies:

D > 40 Mpc, high SFR, spectra  $\Rightarrow$  8 galaxies (LIRGs, ULIRGs)

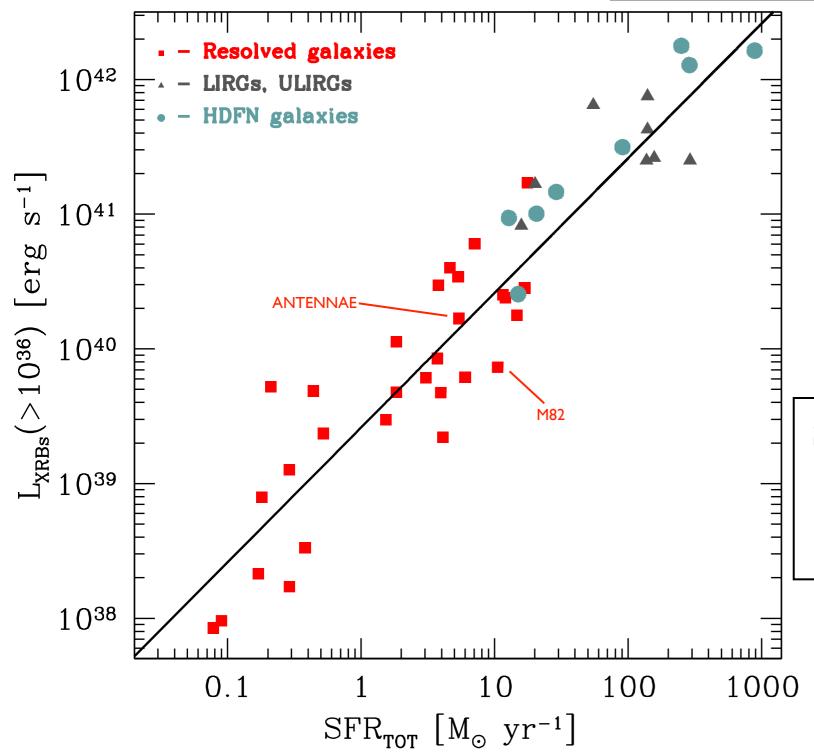
#### Chandra Deep Field galaxies:

 $0.2 \le z \le 1.3 \Rightarrow 12$  late-type galaxies from CDF-South and 13 CDF-North

62 star-forming galaxies
0.1 < SFR (M<sub>☉</sub>/yr) < 10<sup>3</sup>
~1000 resolved X-ray point sources

## Spatial Analysis




#### minimizing the LMXB contribution



# Lx-SFR relation for HMXBs, hot ISM and total emission

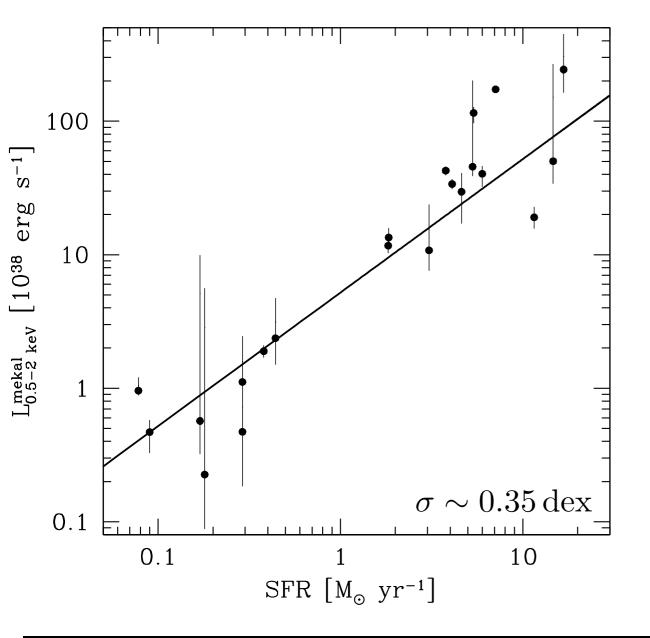
Mineo, Gilfanov & Sunyaev (2012a) - MNRAS 419,2095 Mineo, Gilfanov & Sunyaev (2012b) - arXiv:1205.3715 - MNRAS submitted Mineo, Gilfanov & Sunyaev (2012c) - arXiv: 1207.2157 - MNRAS submitted

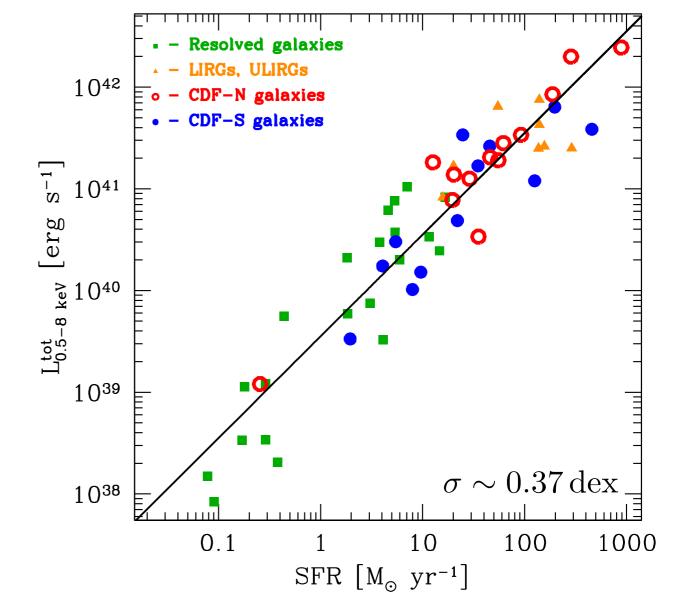
The L<sub>XRB</sub>-SFR relation 
$$L_{0.5-8 \text{ keV}}^{XRB}(\text{erg s}^{-1}) = 2.61 \times 10^{39} \text{ SFR} (M_{\odot} \text{ yr}^{-1})$$



- consistent with Lx-SFR relation of Grimm et al. (2003), Ranalli et al. (2003), Lehmer et al. (2010)
- we also see the dispersion around the L<sub>X</sub>-SFR relation found in earlier studies

$$SFR_{TOT} = SFR_{UV}^{0} + (1 - \eta) SFR_{IR}$$


[Salpeter IMF, 0.1-100 M<sub>☉</sub>] Hirashita et al. (2003), Bell (2003), Iglesias-Paramo et al. (2006)


> Mineo et a. (2012a) MNRAS 419.2095

$$L_{\rm XRB} = \int_{10^{36}}^{L_{\rm lim}} L \frac{\rm dN}{\rm dL} \rm dL + \sum_{L_i \geq L_{\rm lim}} \frac{L_i}{\rm K(L_i)} - 4\pi D^2 \int_{F_{\rm lim}}^{F_{\rm cut}} F \frac{\rm dN_{\rm CXB}}{\rm dF} \rm dF$$

### Lx-SFR relations for hot ISM and total emission

#### HMXBs provide ~3/4 of the 0.5-8 keV luminosity generated per unit SFR



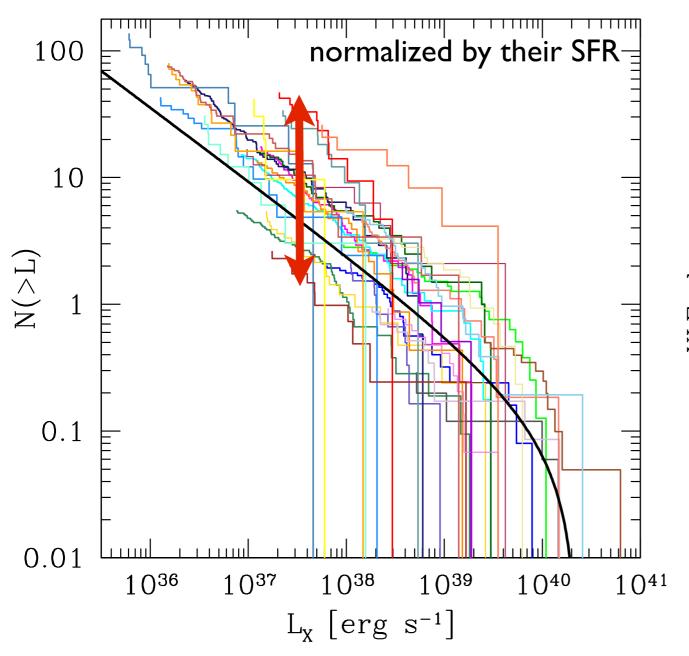


$$L_{0.5-2 \, \mathrm{keV}}^{\mathrm{mekal}}(\mathrm{erg \, s^{-1}}) = (5.2 \pm 0.2) \times 10^{38} \, \mathrm{SFR} \, (\mathrm{M}_{\odot} \, \mathrm{yr}^{-1})$$

$$L_{0.5-8 \text{ keV}}^{\text{tot}}(\text{erg s}^{-1}) = (3.5 \pm 0.4) \times 10^{39} \,\text{SFR} \,(\text{M}_{\odot} \,\text{yr}^{-1})$$

21 galaxies resolved by Chandra (D<40Mpc)

54 galaxies: 21 resolved, 8 ULIRGs, 25 CDFs z≤1.3


Mineo et al. (2012b) - MNRAS submitted arXiv:1205.3715

Mineo et al. (2012c) - MNRAS submitted arXiv: 1207.2157

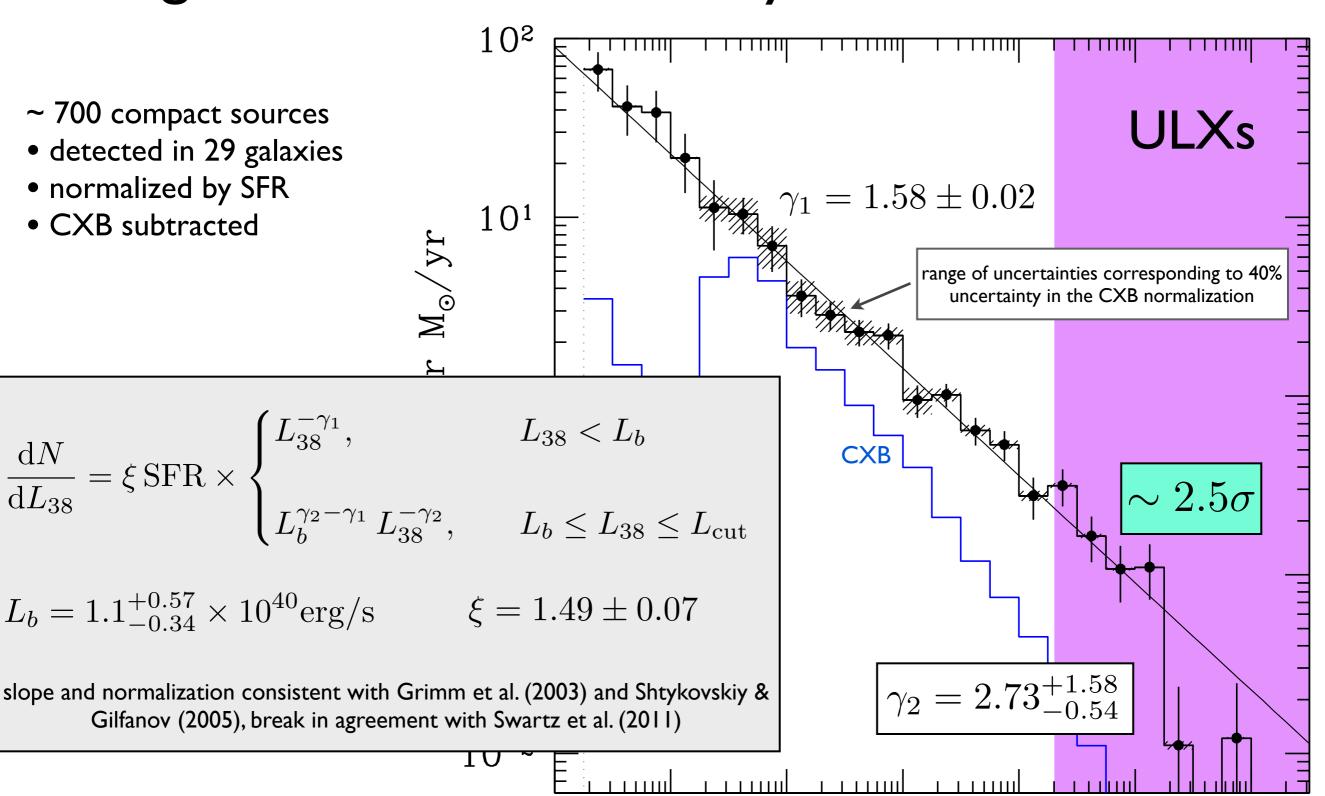
# Luminosity function of HMXBs

Mineo, Gilfanov & Sunyaev (2012) - MNRAS 419,2095

### Cumulative individual XLFs and their slopes



slopes ~consistent with each other 2.5 slope 2 1.5 0.1 10 SFR  $[M_{\odot} yr^{-1}]$ 


factor of ~10 difference in individual XLF normalization but RMS is ~2

$$\langle \gamma \rangle \approx 1.6 \ rms \approx 0.22$$

is the average XLF of HMXBs universal?

# Average differential luminosity function of HMXBs

- ~ 700 compact sources
- detected in 29 galaxies
- normalized by SFR
- CXB subtracted



 $L_b = 1.1^{+0.57}_{-0.34} \times 10^{40} \text{erg/s}$   $\xi = 1.49 \pm 0.07$ slope and normalization consistent with Grimm et al. (2003) and Shtykovskiy &

 $10^{35}$ 

 $10^{36}$ 

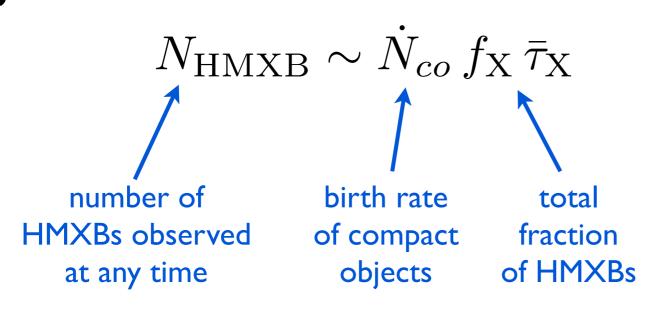
 $10^{37}$ 

 $L_{x}$  [erg s<sup>-1</sup>]

 $10^{38}$ 

 $10^{40}$ 

 $10^{41}$ 


 $10^{39}$ 

# Implications for the theory of binary evolution

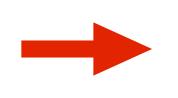
How many black holes and neutron stars become X-ray sources?

Mineo, Gilfanov & Sunyaev (2012) - MNRAS 419,2095

# Specific frequency of X-ray bright compact objects in HMXBs



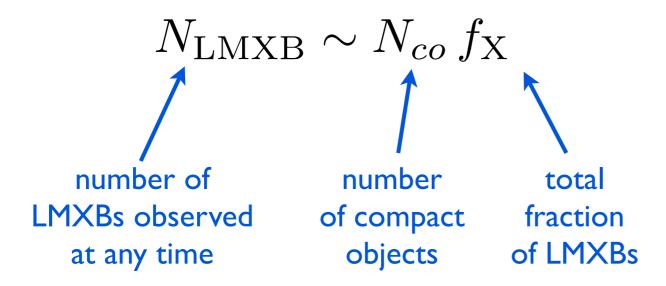
$$\bar{\tau}_{\mathbf{X}} = \frac{\sum_{k} f_{\mathbf{X},k} \, \tau_{\mathbf{X},k}}{\sum_{k} f_{\mathbf{X},k}}$$


average duration of X-ray active phase  $(T_X \sim 10^4 \text{ yr supergiant systems})$  $\tau_X \sim 10^5 \text{ yr Be/X systems}$ 

#### from the HMXB luminosity function (Mineo+ 2012):

$$N_{\rm HMXB}(>10^{35}{\rm erg\,s^{-1}})\approx 135\times{\rm SFR}={\rm N_{NS+BH}}$$

#### assuming Kroupa IMF:


$$\dot{N}_{co} \approx \dot{N}_* (M > 8 M_{\odot}) \approx 7.4 \cdot 10^{-3} \times \text{SFR} = \dot{N}_{\text{NS+BH}}$$

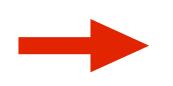


$$f_{\rm X} \sim 0.18 \times \left(\frac{\bar{\tau}_{\rm X}}{0.1 \, {\rm Myr}}\right)^{-1}$$

fraction of compact objects that on the  $f_{\rm X}\sim 0.18\times \left(\frac{\bar{\tau}_{\rm X}}{0.1\,{\rm Myr}}\right)^{-1} \begin{array}{c} {\rm time\ scale\ of\ \sim 10^2\ Myr\ after\ their\ formation} \\ {\rm (e.g.\ Shtykovskiy\ \&\ Gilfanov\ 2007)\ become} \\ {\rm X-ray\ sources\ with\ L_X>10^{35}\ erg/s\ powered} \end{array}$ by accretion from a massive donor star

# Specific frequency of X-ray bright compact objects in LMXBs




considering only LMXBs in the bright state
(no objects in transient systems)

#### from the Nx-M\* relation (Gilfanov 2004):

$$N_{\rm LMXB}(>10^{35}{\rm erg\,s^{-1}})\approx 50\times{\rm M_*/(10^{10}M_{\odot})}={\rm N_{NS+BH}}$$

#### assuming Kroupa IMF:

$$N_{co} \approx N_* (M > 8 M_{\odot}) \approx 5 \cdot 10^{-3} \times M_* = N_{\rm NS+BH}$$



 $f_{\rm X} \sim 10^{-6}$ 

~5 orders or magnitude smaller than the specific frequency of HMXBs

# Constraints on the mass-ratio distribution in binaries

$$f_{\rm X}({
m HMXBs}) \leq f_{
m bin}(m_2 \gtrsim 5 M_{\odot})$$
total fraction fraction of binaries with compact object, having a massive companion

#### for a Kroupa IMF:

$$f(m > 5M_{\odot}) \approx 5.5 \cdot 10^{-3} \sim f_{\rm X}/(30 - 100)$$

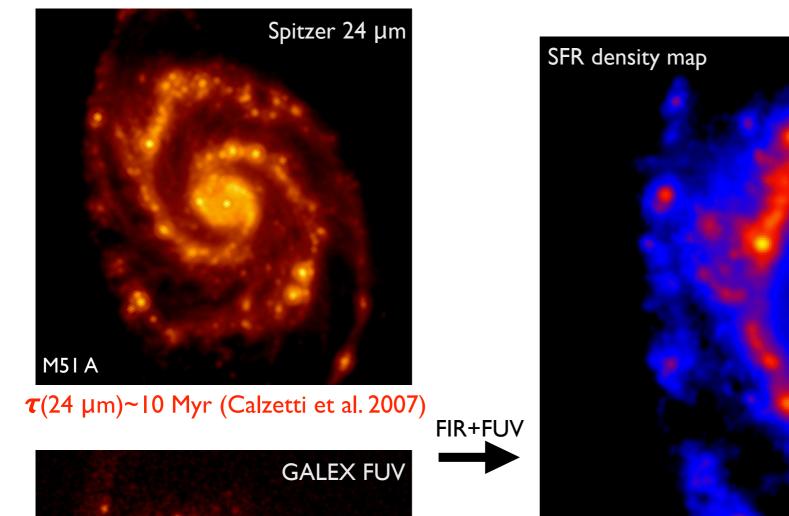
#### for general power-law mass distribution:

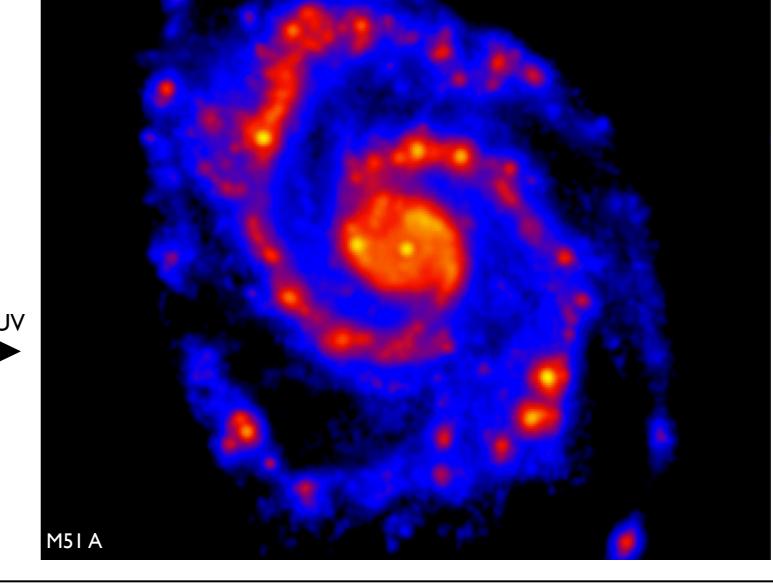
$$\psi(m) \propto m^{-\gamma}, f_{\rm X} = 0.2 \to \gamma < 0.3$$

if the mass transfer does not significantly change m<sub>2</sub>, this excludes the possibility that the masses in the HMXB are independent from the IMF

#### assuming that the number of binaries obeys the following distribution:

$$dN \propto \psi(m_1) dm_1 \, f(q) dq, \qquad q = m_2/m_1$$
 mass distribution of the primary distribution of the mass ratio


for a Kroupa IMF and 
$$f(q)=1$$
 , for  $m_1>8M_{\odot}$  ,  $m_2>5M_{\odot}$  :


$$f_{\rm bin}(m_2 \gtrsim 5 M_{\odot}) = \frac{\int_8^{100} dm_1 \psi(m_1) \int_{5/m_1}^1 f(q) dq}{\int_{0.1}^{100} \psi(m) dm} \approx 0.6$$

# Spatially resolved Nx-SFR relation

Mineo, Fabbiano, Gilfanov, Zezas (2012) - ApJ in preparation

# Spatially resolved N<sub>XRB</sub>-SFR relation





$$\Sigma_{\rm SFR}(M_{\odot}\,{\rm yr}^{-1}\,{\rm kpc}^{-2}) = 8.1\times 10^{-2} {\rm I}_{\rm FUV} + 3.2\times 10^{-3} {\rm I}_{24\,\mu\rm m}$$
 (Leroy et al. 2008)

**τ**(FUV)~50-100 Myr (Calzetti et al. 2005)

M51A

## Spatially resolved N<sub>XRB</sub>-SFR relation

X-Ray source density vs SFR density



- 8 galaxies, D<12 Mpc
- face-on, grand design spiral
- ~450 X-ray point sources
- CXB subtracted

N-SFR relation for HMXB-dominated population

$$N_{\rm XRB}(L > 2 \times 10^{37} {\rm erg \, s^{-1}}) = 6.42 \times {\rm SFR \, (M_{\odot} \, yr^{-1})}$$

### Conclusions

- Largest sample of multi-wavelength data for X-ray resolved star-forming galaxies to date.
- ▶ X-ray luminosity function of HMXBs:
  - substantially improved statistical accuracy and control of systematic effects than achieved in previous studies
  - power law with slope of 1.6 in the  $10^{35}$ - $10^{40}$  erg/s luminosity range
  - evidence for a break near 10<sup>40</sup> erg/s
- ▶ Collective luminosity and number of HMXBs scale with the star formation rate of the host galaxy
- ▶ The fraction of compact objects that once upon their lifetime experienced an X-ray active phase powered by accretion from a high mass companion is ~ 5 orders of magnitude more frequent than in LMXBs.

#### Catalog of XRBs - includes 1055 compact sources

(VizieR On-line Data Catalog: J/MNRAS/419/2095)

## Work in progress

▶ spatially resolved N<sub>X</sub>-SFR density relation for separate arm and inter-arm sources Correlation with the X-ray color-color analysis outcome?

# Thank you for your attention!