
Sample CIAO help files:

dmlist
parameter
filtering

Intro to CIAO: dmlist Page 1 of 4

SUBJECT(dmlist) CONTEXT(tools)

SYNOPSIS

 List contents or structure of a file.

SYNTAX

 dmlist infile optlist [outfile] [rows] [cells]

DESCRIPTION

 ‘dmlist’ dumps the contents or header of a file or block (a
 block is a subfile or FITS extension) to ASCII in an organized
 way. It corresponds to the FTOOLS fdump and fstruct programs,
 but interprets the input file at a higher level. All CXC data
 model formats are supported.

 dmlist uses a comma-delimited list of options to select which
 information is displayed: blocks, keys, comments; Header, Cols,
 Subspace, Data, Array, Full, Struct, all, clean, raw.

 Selected rows of data may be dumped: rows=min:max

EXAMPLES

 (1) dmlist acis.fits full,all | more

 List everything dmlist can tell you about the file and display
 the output using "more".

 (2) dmlist acis.fits opt=blocks

 See what blocks are in the file "acis.fits". (Since opt is a
 positional parameter, you can omit the ’opt=’ if you like).

 (3) dmlist "acis.fits[2]" opt=cols

 See what columns are in the second block (note that we always
 count starting at 1).

 (4) dmlist "acis.fits[events]" opt=header,subspace

 Look at the header and the data subspace for the block called
 "events" in the file. You can choose blocks either by name or
 by number. If you don’t specify a block, the program guesses
 which one you want.

 (5) dmlist "acis.fits[events][pha=20:30]" opt=data rows=100:104

 Look at rows 100 to 104 of the virtual file filtered to show
 only pulse heights between 20 and 30. Note the row numbers are
 those passing the filter, not the original row numbers of the
 underlying file.

 (6) dmlist "pha2.fits[cols channel,counts]" opt=array rows=3:3

 Look at the channel and counts arrays for row 3 of the file,
 displayed in ‘array’ (vertical) format.

 (7) dmlist "acis.fits[events]" opt=header,raw verbose=0

Intro to CIAO: dmlist Page 2 of 4

 Look at the FITS header instead of the DM-level header (the
 ’raw’ option specifies use of the low level interpretation) and
 generate a minimal, ‘bare’ version of the output (verbose = 0).

PARAMETERS

name type ftype def min max units
===
infile string input
opt string
outfile string output
rows string
cells string
verbose integer
mode string

DETAILED PARAMETER DESCRIPTIONS

infile
 type=string
 filetype=input

 The input virtual file specification.

opt
 type=string

 The list of options, separated by commas.

 This required parameter can be one or more of the following:

 Blocks - Summarize all the blocks (images or tables) in the
 file, one line per block.

 Keys - List the ASCDM header keys for the selected block.
 Remember that not all the FITS keywords in a FITS file will be
 included - the ones like EXTNAME and CRPIX that have a special
 meaning for the structure of the file don’t count as ASCDM
 keys, their values show up in other places (e.g. the output
 from cols). With this option, the comment and history records
 are suppressed. To see the low level list of all raw FITS
 header keywords in a FITS file, use opt=header,raw.

 Comments - List the ASCDM comment keys for the block. For a
 FITS file, these keys are the COMMENT and HISTORY keywords.

 Header - Equivalent to Keys,Comments. List both DM level header
 keys and comment/history records. - List the ASCDM header keys
 for the selected block. Remember that not all the FITS keywords
 in a FITS file will be included - the ones like EXTNAME and
 CRPIX that have a special meaning for the structure of the file
 don’t count as ASCDM keys, their values show up in other places
 (e.g. the output from cols). To see the low level list of raw
 FITS header keywords in a FITS file, use opt=header,raw.

 Cols - List the ASCDM columns for the selected block. Shows
 ‘vector columns’ like (X,Y) as pairs. This output shows you the
 names of the variables you can filter a table on and what their
 valid ranges are. If the block is an image, it gives you one
 column with the name of the image (images are interpreted as a
 table with a single row and column).

Intro to CIAO: dmlist Page 3 of 4

 Subspace - Summarizes the data subspace for the block. This
 describes the filters that have been applied to the data,
 either by the user or in processing.

 Data - Prints the data segment. The cells parameter controls
 how much of an array column gets printed. By default, the data
 is printed in an ‘ornate’ format showing arrays grouped in
 parentheses etc. If you use "Clean" option as well, the output
 is in a simpler format suitable for reading by other analysis
 programs.

 Array - Prints the data segment, but with arrays printed
 vertically. The cells parameter controls how much of an array
 column gets printed.

 Full - Equivalent to ’blocks,header,cols,subspace,data’

 Struct - Equivalent to ’header,cols,subspace’

 All - Print the info selected by the other options for all the
 blocks in the dataset.

 Clean - When used in conjunction with the Array or Data
 options, produces stripped down output suitable for parsing by
 other programs.

 Raw - Provides a lower level view of the header. ’header,raw’
 lists the raw FITS header keywords, not just the data model
 keywords. The old ’data,raw’ functionality is now provided by
 ’data,clean’.

outfile
 type=string
 filetype=output

 The output ASCII file to be created, if any.

 The output ASCII file to be created; output is sent to the
 screen if this parameter is blank.

rows
 type=string

 Range of table rows to print (min:max)

 rows=30:40 Print row 30 to row 40 rows=40 Print row 1 to 40
 rows=40:40 Print only row 40 rows=" " Print all rows rows=-1
 Print all rows

cells
 type=string

 Range of array indices to print in array columns and in images.

 Range of array indices to print in array columns and in images.
 cells = 1:8 Print only array elements 1 to 8 of each array
 cells = all Print all array elements.

Intro to CIAO: dmlist Page 4 of 4

verbose
 type=integer

 Controls amount of information to print (0-5).

 The verbose parameter provides debugging information; verbose =
 0 is usually fine.

mode
 type=string

 See the parameter interface documentation.

 mode=h will stop the program prompting for parameters.

SEE ALSO

 dmappend(tools), dmarfadd(tools), dmcontour(tools),
 dmcoords(tools), dmcopy(tools), dmextract(tools), dmgti(tools),
 dmhedit(tools), dmimg2jpg(tools), dmimgcalc(tools),
 dmimghist(tools), dmimgthresh(tools), dmkeypar(tools),
 dmmakepar(tools), dmmakereg(tools), dmmerge(tools),
 dmpaste(tools), dmreadpar(tools), dmsort(tools), dmstat(tools),
 dmtcalc(tools), dmtcalc_expressions(tools),
 dmtype2split(tools), dmwritefef(tools), mtl_build_gti(tools),
 paccess(tools), parameter(tools), pdump(tools), pget(tools),
 pline(tools), plist(tools), pquery(tools), pset(tools),
 punlearn(tools), region(dm), reproject_events(tools),
 stk_build(tools), stk_count(tools), stk_read_num(tools),
 subspace(chandra)

VERSION

 CIAO 2.1

LAST MODIFIED

 15 February 2001

Intro to CIAO: parameter Page 1 of 3

SUBJECT(parameter) CONTEXT(tools)

SYNOPSIS

 Describes the parameter interface.

DESCRIPTION

 All CXCDS tools use ASCII parameter files to get and store
 processing parameters. This interface is similar and extends to
 the IRAF and FTOOLs system and includes all their features.

 Parameter files are picked up from a system install location
 and copied to a user’s local directory. Thereafter, whenever
 the tools are run the version in the user’s local directory is
 used. The environment variables that control where to search
 for the parameter files are (in search order) PDIRS, PFILES,
 and UPARM. The path listed before the ";" is the user writeable
 location where updated parameter files are kept. The ":"
 separated list of directories that follow shows where to search
 for the system default files.

 The following fields are used for each parameter.

 o) name - Name of the parameter used by tool.

 o) type - data-type of the parameter. Valid values are
 s=string, i=integer, r=real, b=boolean, and "pset".

 o) mode - controls whether the parameter is prompted for or
 not. Valid mnemonics are q=query, h=hidden, a=automatic (get
 value from "mode" parameter which can be modified with l=learn,
 eg "ql" means to query and learn.

 o) value - default parameter value. Can be blank if no sensible
 default exists. If mode=*l, then after the tool is run the last
 value becomes the new default.

 o) minimum/enumeration - minimum data value. Can be blank if no
 sensible value exists. Can also be a "|" separated list of
 values. The value can only take one of the values in the
 enumeration.

 o) maximum - maximum data value

 o) prompt - The prompt the user will see if they are prompted
 for the value

 Lines beginning with "#" are comments and are ignored.

 When prompted for a parameter, there are several special
 features that can be invoked

 o) "Tab completion". Similar to tcsh’s tab completion
 functionality. If the input string is a path, hitting the TAB
 key will list all the file+path names that match. If only one
 matches, it will fill in the parameter string.

 o) "History". Using the UP and DOWN arrow keys you can cycle
 thru the previous data values for the current parameter and the
 parameters queried for earlier. If the value being entered has

Intro to CIAO: parameter Page 2 of 3

 enumerated values, these are also cycled thru.

 o) "Help". If the user enters "?" as a parameter value the help
 file for the tool will be displayed. The user can also enter
 "?toolname" to get help for a different tool.

EXAMPLES

 (1) my_tool

 If a tool is run without any command line options then each
 parameter that the tool needs will be read from the user’s copy
 of the tool’s parameter file. The default parameter file name
 is my_tool.par. If the user does not have a copy of the tool’s
 parameter file, one will be copied to the user’s work directory
 (controlled by the PDIRS environment variable).

 (2) my_tool parameter1=value1 parameter2=value2 ...

 Each "Key=Value" Pair will set the named parameter to the given
 value. If the value is invalid (below min, above max, etc) the
 tool will prompt for a correct value. If the parameter listed
 is not in the tools parameter file, the tool will exit with an
 error.

 If there are any parameters that have not been specified on the
 command line that have mode=q, they will be prompted for.

 (3) my_tool value1 value2 ...

 "Command line params"

 The values are read from the command line and applied to the
 parameter file in the order that parameters appear in the
 parameter file, which is not NECESSARILY the order the tool
 prompts for them.

 (4) my_tool parameter1=)parameter2

 "Self redirection": This tells the tool to use the value stored
 in parameter2 for the value of parameter1, where parameter1 and
 parameter2 are in the tool’s parameter file.

 A common example of this is for the event processing tools
 where the event definition string is redirected from one of
 several listed in the .par file.

 (5) my_tool parameter=)tool2.parameter

 "External redirection": Similar to "Self redirection" this
 tells the tool to set parameter1 in its parameter file to
 parameter2 in tool2’s parameter file.

 This is very useful for scripts when chaining tools together to
 set the input file name of one tool to the output file name of
 an earlier tool in the script.

 (6) my_tool parameter=))command

 "Command substitution": The sh shell command after the "))"’s
 is evaluated and the result is returned and used as the
 parameter’s value.

Intro to CIAO: parameter Page 3 of 3

 The most common use of this feature is to use environment
 variables as part of parameter value, e.g.

 parameter="))echo $ASCDS_INSTALL/data/psfsize.fits"

 (7) my_tool @@parameter

 "Alternate parameter file": The default behavior of the
 parameter interface is to look for my_tool.par in the user’s
 search path(s). Using this syntax the user can use an alternate
 parameter file. The alternate parameter file can be in a
 "non-searched" location,eg @@/tmp/my_tool.par or have a
 completely different name, eg @@/home/foo/my_alternate.par.

 This can be used to store parameter files locally, that is have
 some relative path in the PDIRS environment variable, but when
 running the tool from another path to force it to use the
 non-local version.
SEE ALSO

 dmappend(tools), dmcopy(tools), dmhedit(tools),
 dmimgcalc(tools), dmkeypar(tools), dmlist(tools),
 dmmakepar(tools), dmmakereg(tools), dmmerge(tools),
 dmpaste(tools), dmreadpar(tools), dmsort(tools), dmstat(tools),
 dmtcalc(tools), dmtcalc_expressions(tools),
 dmtype2split(tools), paccess(tools), pdump(tools), pget(tools),
 pline(tools), plist(tools), pquery(tools), pset(tools),
 punlearn(tools), stk_build(tools), stk_count(tools),
 stk_read_num(tools), subspace(chandra)

VERSION

 CIAO 2.1

LAST MODIFIED

 9 February 2001

Intro to CIAO: filtering Page 1 of 4

SUBJECT(filtering) CONTEXT(dm)

SYNOPSIS

 The CIAO filtering syntax

SYNTAX

 [filter nameA=min1:max1,min2:max2,...minN,maxN]
 [filter nameA=min1:max1,...minN,maxN,nameB=min1:max1,...]
 [nameA=min1:max1,...minN,maxN,nameB=min1:max1,...]
 [filter nameA=shape(parameters),nameB=REGION(region_filename)]
 [filter @filter.lis]
 [filter nameA<max,nameA>min,nameA!=val]
 [filter (nameA=min1:max1)||(nameA=min3:max3,nameB=min3:max3)]
 [exclude nameA=min1:max1,min2:max2,..,nameB=...]

DESCRIPTION

 This help file is split up into the following sections:

 o) 1. Table filtering on columns with real data types

 o) 2. Table filtering on columns with integer data types

 o) 3. Table filtering on columns with character string data
 types

 o) 4. Table filtering on columns with bit data type

 o) 5. Table filtering on vector columns using region filters

 o) 6. Compound filters

 o) 7. Exclude filters

 1. TABLE FILTERING ON COLUMNS WITH REAL DATA TYPE

 There are a number of ways to filter a DM block (table or image
 in a file). In this section we describe table filtering; see
 also ‘ahelp dmimfiltering’ for filtering files which are in
 image format. To see which column names you can filter on, use

 dmlist a.fits cols

 to display the columns in the main block of file a.fits. The
 simplest kind of filter is a range filter

 [filter energy=1000:2000]

 which specifies that the DM should only see rows in the input
 file which satisfy 1000.0 <= energy < 2000.0. You can use this
 filter by appending it to a filename or block name in any of
 the CIAO tools:

 dmcopy "a.fits[filter energy=1000:2000]" b.fits

 dmcopy "a.fits[events][filter energy=1000:2000]" b.fits

 Note that the string "filter(space)" is optional:

Intro to CIAO: filtering Page 2 of 4

 dmcopy "a.fits[energy=1000:2000]" b.fits

 You can filter on multiple quantities:

 dmcopy "a.fits[energy=1000:2000,time=5410300:5410320]" b.fits

 You can also filter on multiple ranges for each quantity:

 dmcopy "a.fits[energy=1000:2000,4000:8000,grade=0,2:4,6]"
 b.fits

 This filter accepts rows which have energies between either
 1000 and 2000 or 4000 and 8000, and grades equal to 0, 2 to 4,
 or 6. Note that you can leave out the colon if the min and max
 of a range are the same, so 0:0 becomes just 0. If you want to
 express "less than" and "greater than", you can just retain the
 colon but omit the min or max:

 [energy=:4000]

 means accept energies up to 4000;

 [detx=:511,513:]

 means accept all values of detx except 511.0 <= detx < 513.0.

 2. TABLE FILTERING ON COLUMNS WITH INTEGER DATA TYPES

 The interpretation is a little different depending on whether
 the table column has integer or real data type. For an integer
 data type column,

 [energy=4000:5000]

 means (4000 <= energy <= 5000), in other words both ends of the
 range are included.

 3. TABLE FILTERING ON COLUMNS WITH CHARACTER STRING DATA TYPES

 Filtering is a little more restricted with character string
 columns. You can only use the colon syntax, for example:

 [filter shape=m:n,point,rectangle,s:z]

 Be careful: the range m:n includes everything beginning with m,
 and it includes the letter n, but not other strings beginning
 with n: for example, "ngc" is not within m:n since in an ASCII
 ordering ngc > n. The comparison is case-sensitive.

 4. TABLE FILTERING ON COLUMNS WITH BIT DATA TYPE

 Columns with bit data type are a special case. The most common
 example is the STATUS column in the event files, which is 32
 bits wide. Suppose for simplicity you instead have a status
 column with only 6 bits, and wish to accept rows with the 3rd
 bit from the end set and the end bit equal to zero. A simple
 numeric filter of the type described above would have to be
 very complicated to describe all the numeric values for which
 these bits have the desired values; instead, the user supplies
 a ‘bitmask string’:

Intro to CIAO: filtering Page 3 of 4

 [filter status=xxx1x0]

 The string may only contain the characters 1 (corresponding bit
 must be set), 0 (bit must not be set) and x (wild card: bit may
 have any value).

 5. TABLE FILTERING ON VECTOR COLUMNS USING REGION FILTERS

 In CIAO, a ‘vector column’ is a paired column consisting of two
 components. For instance, the DET vector column has components
 DETX and DETY. You can see which of the columns in the file are
 vector columns by using ‘dmlist filename cols’. There are two
 ways to filter on a vector column: define a rectangular region
 by filtering on each of the components as usual,

 dmcopy "evt.fits[detx=4000:5000,dety=3000:4000]" rectangle.fits

 or, use a region filter (see ‘ahelp regions’ for the full
 region syntax) on the vector column, either using its name - in
 this case DET - or the two components in parentheses - in this
 case (DETX,DETY).

 dmcopy "evt.fits[det=circle(4500,3500,120)]" circle.fits

 dmcopy "evt.fits[(detx,dety)=circle(4500,3500,120)]"
 circle.fits

 6. COMPOUND FILTERS

 The syntax now supports compound (logical OR) filters:

 dmcopy
 "evt.fits[(ccd_id=2,chipx=512:513)||(ccd_id=7,chipx=500:520)]"
 two_bits.fits

 Note that we do not support arbitrarily complex C-style logical
 expressions, just lists of filters separated by ||.

 7. EXCLUDE FILTERS

 A very useful new feature is to invert a filter, excluding
 instead of including:

 dmcopy "evt.fits[exclude sky=region(reg.ds9)]" holes.fits

 dmcopy "evt.fits[exclude pha=2:100,grade=7]" clean.fits

 This is particularly useful in conjunction with compound
 filters:

 dmcopy "evt.fits[exclude
 (ccd_id=0:6,8:9,chipx=513,fltgrade=208)||(ccd_id=7,chipx=512:513,
 fltgrade=2,64)]" better.fits
SEE ALSO

 binning(dm), coords(chandra), dm(dm), dmcols(dm), dmimages(dm),
 dmimfiltering(dm), dmintro(dm), dmsyntax(dm)

VERSION

 CIAO 2.1

Intro to CIAO: filtering Page 4 of 4

LAST MODIFIED

 16 February 2001

