
CIAO 2.2 & S-Lang

What is S-Lang?

A popular interpreted language (so
no compile/link stages) created by
John Davis of the Center for Space
Research at MIT.
Used by a number of diverse programs
(eg jed, mutt, ISIS & CIAO) to
provide a scripting/control
language.
Has a C-like syntax without the
worries of memory management.
Provides a powerful array-based
numerical computing environment.
Programs can easily add new commands
to extend the language.

For more information see

http://www.s-lang.org/

cxc.harvard.edu/ciao/ahelp/slang.html

Our First S-Lang function

define hello() { print("Hello World!"); }



Where is S-Lang?

It is available from Sherpa and
ChIPS.

chips> define hw() { print("Hello World!"); }

chips> hw()

Hello World!

chips>

ahelp slang-ciao
ahelp slang-chips
ahelp slang-sherpa

It is also possible to "load" ChIPS
into a S-Lang script. This allows a
program such as jed to use ChIPS to
create plots. A more useful
application is the creation of
S-Lang "scripts" similar to - but
more powerful than - the shell
scripts we currently provide. Coming
soon to a CIAO website near you!

CIAO contains the Varmm (Variable,
Math, and Macro) library, which
extends S-Lang with useful routines
for the Astronomer (eg FITS
in/output, simple math operations).

ahelp varmm



Why bother?

Sherpa and ChIPS both have their own
command languages (ahelp sherpa and
ahelp chips) but they are designed
for interactive use. Neither allow
you to manipulate data, or provide
loops and conditional statements.

Although "command scripts" can be
used to automate tasks, what is
needed is a powerful and versatile
language that can be used within
ChIPS and Sherpa.

S-Lang was chosen since it is small,
designed to be "embedded" within
applications, and has a powerful
array-manipulation syntax which
simplifies many mathematical
operations.

GUIDE is written in S-Lang.

A number of S-Lang routines are
available from the CIAO website (in
the Download Scripts section) that
illustrate some of the possibilities
of S-Lang within CIAO.

cxc.harvard.edu/ciao/download_scripts.html



A source of confusion

ChIPS & Sherpa parse each line of input
and work out whether to handle it
themselves or to pass it on to the
S-Lang interpreter. This has good and
bad points:

"good"
You do not need to pre-declare
variables, finish with a semi-colon,
or worry about the stack.

"bad"
Statements can not span multiple
lines, error messages are often
complex, and it is possible - if you
try hard enough - to confuse the
parser.

This scheme means that ChIPS and Sherpa
command scripts can contain S-Lang
statements. However, the S-Lang
interpreter does not understand ChIPS
or Sherpa commands. Instead, "pure"
S-Lang code has to use the chips_eval()
and sherpa_eval() commands, which sends
the arguments to the ChIPS and Sherpa
interpreters respectively.



Loading/running S-Lang code

unix% chips foo.chp
unix% chips --batch foo.chp

The file foo.chp can contain ChIPS and
S-Lang commands (those that fit onto 1
line). The '--batch' option exits ChIPS
after running through the commands,
rather than leaving you at the prompt.

unix% chips --slscript foo.sl
unix% chips --batch --slscript foo.sl

The file foo.sl can contain S-Lang
commands (including multi-line
statements, but variables must be
pe-declared and trailing semi-colons
must be included).

chips> () = evalfile("foo.sl");
chips> evalfile("foo.sl")
1

S-Lang code can also be loaded into a
running ChIPS or Sherpa session with
the evalfile() command. The evalfile()
command returns a 1 if succesfull: in
the first instance we ignore the value
(the '()=...' syntax), and in the
second we let ChIPS clear the return
value from the stack (the cleared
values get printed to the screen).



A digression about calculators

S-Lang passes function arguments and
return values by adding/removing them
from the "stack" (essentially a region
of memory which remembers the order
that items were placed into it). It is
therefore important to use the correct
number of function arguments, and the
correct number of return values in
S-Lang code - otherwise the code will
stop with "Stack underflow/overflow"
errors.

However, both ChIPS and Sherpa will
clean up the stack after processing a
S-Lang command, and print out any
remaining items (note that this is only
true from the chips> or sherpa>
prompts). This makes using S-Lang
easier, and turns ChIPS and Sherpa into
calculators:

chips> 12.0/5
2.4
chips> sin(PI/4)
0.707107

although sherpa can get confused

sherpa> sin(PI/4)
Error: Model Error has been detected.
--   Parameter type mismatch.



Example - plotting a pha file
/data/ciao_demo/threads/S-Lang/plot_pha/

Directly from ChIPS:
chips> variable pha = readpha( "source.pi" );
chips> print(pha)
_filename        =  source.pi
_path            =

/data/ciao_demo/threads/S-Lang/plot_pha/
_filter          =  NULL
_header          =  String_Type[428]
backscal         =  0.00302159
areascal         =  1
exptime          =  51164.2
_ncols           =  11
_nrows           =  1024
channels         =  Float_Type[554]
counts           =  Float_Type[554]
grouping         =  Integer_Type[1024]
qualityflags     =  Integer_Type[554]
phachans         =  Integer_Type[554]
errors           =  Float_Type[554]
background       =  none
arf              =  none
response         =  none
numgroups        =  554
numchans         =  1024
chips> () = chips_eval("clear");
chips> () = chips_eval("split 2");
chips> () = curve( pha.channels, pha.counts );
chips> () = chips_eval("limits x -10 220");
chips> () = chips_eval("d 2 limits x -10 220");
chips> () = curve( pha.channels, log(pha.counts) );

The file plot_pha.scp contains these
commands and can be executed using:

unix% chips plot_pha.scp





These commands could be written as a
function (here called plot_pha1):

define plot_pha1 (phaname) {
variable pha = readpha( phaname );
if ( pha == NULL )

error("Unable to read pha file " + phaname);

() = chips_eval("redraw off");
() = chips_eval("clear");
() = chips_eval("split 2");
() = curve( pha.channels, pha.counts );
() = chips_eval("limits x -10 220");

% second plot
() = chips_eval("d 2 limits x -10 220");
() = curve( pha.channels, log(pha.counts) );

() = chips_eval("redraw on");

}

If the file plot_pha1.sl contains the
above, then it can be loaded and called
as shown below:

chips> () = evalfile("plot_pha1.sl")
chips> plot_pha1( "source.pi" )

The following ahelp pages discuss some
of the commands and concepts used here:

ahelp readfile
ahelp -c slang print
ahelp chips_eval
ahelp slang-ciao



Changing the plot

In the previous example, the plot was
created using chips_eval() to call
ChIPS commands (other than the curve()
command). The most common plot
attributes (eg line color, symbol
style) can also be changed using the
chips state object (ahelp slang-chips)
as shown in plot_pha2.sl:

% label_axes( xtext, ytext )
% - makes labelling axes easier
%
define label_axes( xl, yl ) {

() = chips_eval("xlabel '" + xl + "'");
() = chips_eval("ylabel '" + yl + "'");

}

define plot_pha2 (phaname) {
variable pha = readpha( phaname );
if ( pha == NULL )

error("Unable to read pha file " + phaname);

% store the current chips settings
variable oldchips = @chips;

% set plot styles
chips.symbolstyle = _chips->diamond;
chips.symbolcolor = _chips->blue;
chips.curvestyle  = _chips->histo;
chips.curvecolor  = _chips->red;

% first plot
() = chips_eval("redraw off");
() = chips_eval("clear");
() = chips_eval("split 2");
() = curve( pha.channels, pha.counts );
() = chips_eval("limits x -10 220");
label_axes( "", "Counts" );



% second plot
() = chips_eval("d 2 limits x -10 220");
() = curve( pha.channels, log(pha.counts) );
label_axes( "Channels", "Counts" );

() = chips_eval("redraw on");

% restore the chips plotting styles
set_state( "chips", oldchips );

}



Example - calling Sherpa & ChIPS
/data/ciao_demo/threads/S-Lang/hetg_plot/

S-Lang code can use both Sherpa and
ChIPS commands, if called from a Sherpa
session. Here we define a function that
plots the +/- 1 orders of the HEG and
MEG (if loaded).

define hetg_plot () {

if ( _NARGS != 0 ) {
message("Usage: hetg_plot()\n" +

"makes pretty plots of grating data");
return;

}

() = sherpa_eval("set plot noerrorbars");

% plot +/- 1 orders of HEG and MEG
% - check the return code
% to see if everything is a-okay
variable err = sherpa_eval(

"lp 4 data 3 data 4 data 9 data 10 data");
if ( err != 0 ) {

message("Error plotting grating data " +
"... is it loaded?");
return;

}

% make the plot look a bit better
% - ignoring return codes here (lazy)
() = chips_eval("split maj Y");
() = chips_eval("split 2 2");
() = chips_eval("split gap X 0.1");
() = chips_eval("split gap Y 0.05");
() = chips_eval("redraw"); % replot
return;

}



unix% sherpa --slscript hetg_plot.sl
...
sherpa> data acis_pha2.fits
...
sherpa> hetg_plot



Example - handling arrays
/data/ciao_demo/threads/S-Lang/loops/

Since S-Lang resembles C in many ways,
numerical algorithms can often be
converted with little effort. The
following code, which calculates the
sum of all the elements in an array, is
essentially unchanged:

% calc_sum1() computes the sum of elements of a
% 1-D array.
%
define calc_sum1 (x)
{

variable num = length(x);
variable total, i;

total = x[0];
% start looping at the second element
for ( i = 1; i < num; i++ )
{

total += x[i];
}

return total;
}

In use it looks like

unix --slscript calc_sum1.sl
chips> x = [1:10]
chips> print(calc_sum1(x))
55
chips> y = [ [1:5], [6:10] ]
chips> print(calc_sum1(y))
Invalid Parameter: Array requires 2 indices
Invalid Parameter: print(calc_sum1(y));



However, the real power of S-Lang is
revealed if you re-write the algorithm:

% this is faster than calc_sum1, and will handle
% numerical arrays of any dimensionality
%
define calc_sum2 (x)
{

variable total = 0;
foreach ( x )
{

total += ();
}

return total;
}

The foreach() command loops through
every element in the supplied array -
whatever its dimensionality - placing
the current value onto the stack. This
value is then retrieved - and added
onto the current total - by the 'total
+= ();' line.

chips> x = [1:10]
chips> y = [ [1:5], [6:10] ]
chips> () = evalfile("calc_sum2.sl")
chips> print(calc_sum2(x))
55
chips> print(calc_sum2(y))
55

The Varmm library provides min(),
max(), sum() and reverse().



Example - array manipulation

S-Lang contains a number of
mathematical functions (eg cos, asinh)
that work on arrays as well as scalars.
It is also possible to access/change
subsets of an array using the array
indexing functions:

chips> x = [0:2*PI:0.01]
chips> y = sin(x)
chips> split 3
chips> () = curve(x,y)
chips> i = where(y > 0)
chips> d 2
chips> () = curve(x[i],y[i])
chips> y[i] *= -1
chips> d 3
chips> () = curve(x,y)

www.s-lang.org/doc/html/slangfun-6.html
www.s-lang.org/doc/html/slang-11.html

Also see the following scripts on the
"Download Scripts" section of the CIAO
web pages:

analyze_ltcrv.sl
lc_clean.sl
regions.sl
sstats.sl





There are many more subjects that could
be mentioned, for instance:

ChIPS, Sherpa, and the Varmm have
resource files which can be used to
customize your S-Lang environment.

The behavior of ChIPS and Varmm can
be controlled using "state objects".

Varmm uses structures to store/write
data files. Structures can be
created "on the fly" and are useful
for grouping together data.

Associative arrays: these are
similar to normal arrays, except
that strings, not integers, are used
to index the elements.

I/O, string manipulation,
running/accessing system commands,
...

Useful resources:

http://www.s-lang.org/
ahelp slang-tips (examples are in
/data/ciao_demo/threads/S-Lang/tips)

S-Lang in CIAO by Example (coming soon)


