
X-ray Timing Analysis

Does My Source Vary?

On What Time Scales Does it Vary?

Are the Variations Periodic or Aperiodic?

How Do Different Energy Bands Relate to One Another?

*Michael Nowak - Chandra X-ray Science Center/MIT Kavli Institute

Some Questions That We’d Like to Answer:

*(With Some Judicious Stealing of Slides from Z. Arzoumanian’s 2003 X-ray Astronomy School Talk) 



Characteristic Time Scales:

τ≥ 1000 sec                       108  M❍    (AGN)

τ≥ 100 μsec                      10   M❍     (BHC)

τ≥ 15 μsec                        1.4  M❍     (NS)

τ≥ R/V,   V ≤  c,   R ≥ 2 GM/c2

These are the Fastest Achievable Time Scales.  In Reality, 
There Can be Variability on a Range of Time Scales.

.

.

.



Rotational Periods:

Accretion Time Scales:
Dynamical, Thermal, Viscous 
	 Time Scales
msec - days  for NS/BHC
minutes - years for AGN

msec - sec  for NS/WD
hr - days for Stars

Orbital Time Scales:
minutes to days for NS/BHC
Suber-orbital periods: 
	 weeks to months



Timing Starts with a Lightcurve

Different Spacecraft can have different 
tools for creating Lightcurves

DMTOOLS, FTOOLS, Xselect, S-lang or 
Python scripts using cfitsio library.

Always choose integer multiple of 
“natural” time unit for binning

Don’t bin any more than you have to - 
save it for subsequent analysis



Barycenter the data with axbary (CIAO) or fxbary (FTOOLS)!

Precision Absolute & Relative Timing

axbary  4u2129_chandra.fits  orbit_file.fits  4u2129_barycenter.fits



CIAO: DMEXTRACT
dmextract infile="4u2129_chandra.fits [EVENTS] [sky=region(source.reg)][bin time=::1.14104]" 
                outfile=4u2129_ps.fits opt=ltc1

Could have used FTOOLS or Xselect (wrapper around FTOOLS)



CIAO: Or Scripts (ISIS, Sherpa)

isis> (tmin,tmax) = fits_read_header(“4u2129_chandra.fits”,                         
”tstart”,”tstop”);
isis> tlo=[tmin:tmax:1.14104];
isis> thi=make_hi_grid(tlo);
isis> t=fits_read_col(“4u2129_chandra.fits”,”time”);
isis> counts=histogram(t,tlo,thi);
isis> hplot(tlo,thi,counts);

(Some more work if one wanted to intersect Good Time Intervals=GTI)

Perhaps first do a dmcopy to isolate the source(s) of interest.



Length & Binning Determine Limits 
Lowest Frequency:  flong = 1/T

Highest Frequency: Nyquist Frequency, 
fNyq = 1/(2Δt)

Basic Question, is the 
Variance:                                                          .

                                                                             

Greater than Expected from Poisson 
Noise?

σ = Root Mean Square Variability

T,  N=T/Δt

Δt

σ
2

= 〈x2〉 − 〈x〉2



What are the Tools of the Trade?
Timing:  Xronos - Some use, but less “universal” than spectra

More CIAO Tools (e.g., from Chandra Catalog) will be coming

gl_vary (Bayesian lightcurve), dither_region (area vs. time)

Most People “Roll Their Own”

Custom Fortran/C/C++ Code

IDL or MATLAB or Python or Ruby or ...

Me: S-lang  (http://space.mit.edu/CXC/analysis/SITAR)

http://space.mit.edu/CXC/analysis/SITAR
http://space.mit.edu/CXC/analysis/SITAR


Variability Test I: Excess Variance

σ2

rms =
1

Nµ2

N
∑

i=1

[

(Xi − µ)2 − σ2

i

]

∆σ2

rms = sD/(µ2
√

N)

s2

D =
1

N − 1

N
∑

i

([

(Xi − µ)2 − σ2

i

]

− σ2

rmsµ
2
)2

µXi ± σiBinned Lightcurve with Values:                      and mean:       

See Turner et al. 1999, ApJ, 524, p. 667 ; Nandra et al. 1997, ApJ, 476, p. 70



Test II: Kolmogorov-Smirnov
Is cumulative arrival time consistent with 
constant rate? -or- Is distribution of times 
inbetween events consistent?

See Press et al., “Numerical Recipes”, 
plus lots of other better statistics sources.

CIAO Tools for K-S and Kuiper variant, 
eventually from Chandra Source Catalog.

Also available in many script forms      
(S-lang script available upon request). 

K-S/Kuiper test variability, but don’t 
characterize it.

Significance = 8 X 10-5

D = Maximum Deviation

Observed Arrival Time 
Distribution

Uniform Rate 
Distribution



Test II: Kolmogorov-Smirnov
isis> require("stats");                        % S-lang statistics model with KS/Kuiper tests
isis> modl = (t-tstart)/(tstop-tstart);   % Fraction of observing time vs. event
isis> print(ks_test(modl));                 % Kolmogorov- Smirnov probability
isis> print(kuiper_test(modl));           % Kuiper test probability

The above presumes uniform effective area vs. time, no dead time intervals, etc.

Straightforward to modify to include such effects.  The model must become, e.g.:

∫ t[i]
tstart

Area(t) θ(tGTI) dt
∫ tstop

tstart
Area(t) θ(tGTI) dt



Test III: Direct Fitting, ISIS
Can be done in ISIS, Sherpa, or XSPEC (most difficult in XSPEC, since one has to create 
fake response matrices first - not true in ISIS or Sherpa)

You can write your own fit functions - remember to account for finite bin widths!

isis> (tlo,r,e) = fits_read_col(“lc.fits”,”time”,”rate”,”error”);
isis> thi = make_hi_grid(tlo);
isis> define_counts(tlo,thi,r,e);
isis> fit_fun(“orbit(1)”);           % Orbit is a custom written S-lang function
isis> () = fit_counts;



Test III: Direct Fitting, ISIS
define orbit_fit(lo,hi,par)
{ % par[0] = Time of phase 0 (midpoint of eclipse)
   % par[1] = Period
   % par[2] = Width of Ingress (seconds)
   % par[3] = Width of Eclipse (seconds)
   % par[4] = Width of Egress  (seconds)
   variable plo, phi, ipneg, pa, pb, pw, pmid, pumid, orb = @lo;
   % Times converted to phases
   plo = ((lo - par[0]) mod par[1])/par[1];
   phi = ((hi - par[0]) mod par[1])/par[1];
   ipneg = where(plo < 0);
   plo[ipneg]=plo[ipneg]+1;
   ipneg = where(phi < 0);
   phi[ipneg]=phi[ipneg]+1;
   % Time widths converted to phase widths
   pa = par[2]/par[1];
   pw = par[3]/par[1];
   pb = par[4]/par[1];
   variable i=0;
   loop(length(lo))
   {  % Lo bin is in eclipse, but hi bin is ...
      if( plo[i]>=0 and plo[i]<pw/2 )
      {  % in eclipse ...
         if(phi[i] <= pw/2){ orb[i]=0.; }
        % or in egress ...
         else if(phi[i]<=pw/2+pb)

          {pmid=pw/2;
           orb[i]=((phi[i]*(phi[i]-pw)-pmid*(pmid-pw))/2/pb)
                       /(phi[i]-plo[i]);}
         % or is eclipsed
         else
         {  pumid=1-pw/2;
            pmid=1-pw/2-pa;
            orb[i]=((pmid-plo[i])+(pumid*(2-pw-pumid)-
                     pmid*(2-pw-pmid))/2/pa)/(phi[i]-plo[i]);  }
      }
      % Lo bin is in egress, but hi bin is ...
      else if( plo[i]>=1-pw/2-pa and plo[i]<1-pw/2 )
      {  % is in egress ...
         if(phi[i]<=1-pw/2)
         { orb[i]=(phi[i]*(2-pw-phi[i])- plo[i]*(2-pw-plo[i]))
                        /2/pa/(phi[i]-plo[i]); }
         % or is eclipsed
         else
         { pmid=1-pw/2;
            orb[i]=(pmid*(2-pw-pmid)-plo[i]*(2-pw-plo[i]))
                        /2/pa/(phi[i]-plo[i]); }
      } 
      % Lo bin is eclipsed (and hi bin by assumption)
      else
      { orb[i]=0.; }
      i++; }   return orb; }



Test III: Direct Fitting, ISIS
XMM-Newton data of previous 
Chandra observed source.

Model is constant, with finite 
ingress & egress, plus eclipse.

Can add other components 
(e.g., sinusoid), and do 
confidence tests as for spectra.



Test III: Direct Fitting, Sherpa
Example of fitting data from an ASCII file:

sherpa> load_data(1,”lightcurve.dat”,4,[“XLO”,”XHI”,”Y”,”STATERROR”]);
sherpa> set_model(“custom_model”);
sherpa> fit(1);

Could also have read data with a single X-column.

Histogram data is a little bit easier to deal with, since defining the average 
over a time bin is less ambiguous.



Ninja Topic: Bayes Stats

Bayesian Methods Don’t Require Binning 
(Case below: event times only!)

Gregory & Loredo (1992, ApJ, 398, p. 
146) - Determines Optimal Uniform 
Binning. (CIAO version, gl_vary, soon;  
S-lang script available upon request)

Bayesian Blocks (J. Scargle, 20XX) - 
Determines Optimal Non-uniform 
Binning.  (S-lang Version on SITAR page)

 t = fits_read_col("4u2129_chandra.fits",”time”);
cell = sitar_make_data_cells(t,2,0.7,1.14104,min(t),max(t));
ans = sitar_global_optimum(cell,3.5,2);



Fourier Transform Methods

A Workhorse of the Timing World

How is Variability Power Distributed as a Function of Frequency?                                                                                           

{



Fast Fourier Transform (FFT)

Lightcurve with: N bins, comprised of counts, xi, becomes power spectrum, with N/2+1 
independent amplitudes, and N/2-1 independent complex phases (real data)

Good FFTs usually optimized for N = power of 2

Power Spectrum is the squared Fourier amplitude, properly normalized

Power Spectrum is throwing out information! Not unique!

Xj ≡

N−1∑

k=0

xk exp(2πijk/N) , j = [−N/2, . . . , 0, . . . , N/2]

Pj = 2|Xj |
2/(Rate × Ttotal)

Pj = 2|Xj |
2/(Rate2 × Ttotal) (“One Sided” RMS Normalization)

(“One Sided” Leahy Normalization)



FFT Normalizations
Leahy: Poisson Noise level = 2, intrinsic Power scales as rate
RMS: intrinsic Power independent of rate, Noise level = 2/rate
Integral of PSD is measure of Root Mean Square variability

A =

∫
Prmsdf =

∑
j

P j
rms

∆f , ∆f = 1/T

√
A = rms/mean =

(

〈x2〉 − 〈x〉2

〈x〉2

)1/2

PSD Normalizations are often plotted as (RMS)2/Hz

Pulsed Fraction (coherent oscillation): fp =

√

2(PLeahy − 2)

Rate



PSD Statistics
Leahy noise level is 2 +/- 2  (distributed as         with 2 DoF)

Increasing lightcurve length doesn’t help - distributes noise 
among more frequency bins!

“Statistically Stationary Processes” have Power = Pj +/- Pj 

Reduce noise by averaging PSD from individual lightcurve 
segments, as well as over (usually logarithmically spaced) 
adjacent frequency bins

Errors reduced by factor of:

χ
2

√

Navg



With: You can fit modelsP ′

j = (Pj − Pnoise) ± Pj/
√

Navg

Note: Total RMS = Incoherent sum of components, i.e., 
(

∑

i

RMS
2

i

)1/2

Advice: fit models that average over frequency bin widths



Fit PSDs Just Like Lightcurves
ISIS example, with helper functions from SITAR

isis> (t,cts) = fits_read_col("events_18_39_a.lc","time","counts");
isis> (f,psd,n,cts) = sitar_avg_psd(cts,65536,1./2^12,t); 
isis> (aflo,afhi,apsd,nf) = sitar_lbin_psd(f,psd,0.01); 
isis> id = sitar_define_psd(aflo,afhi,apsd,apsd/sqrt(na*nf));
isis> fit_fun("constant(1)+qpo(1)");                                           % QPO is a custom S-lang function
isis> () = fit_counts;



Ninja Topic: Aliasing!
Signals appear at sum/difference frequencies of primary signals, whether  
signals are “real” or “fake” (e.g., sampling periods)
Beware characteristic times!  Spacecraft orbits, dither time scale, 1 year, ...
Example: RXTE-All Sky Monitor - Many sources show periods at 24 hours +/- a 
small bit = 1/Years Secular Change with a 24 hour sample period (e.g., from 
AGN monitoring).



Epoch Folding & Period Searches
Good for non-sinusoidal variations
Good for when there are data gaps or complicated  window functions
Not good for aperiodic variability

isis> event = sitar_readasm("xa_x1820-303_d1",,,1.2);
isis> fold = sitar_epfold_rate(event.time,event.rate,
10,500,20,2000);
isis> xlabel("Trial Period"); ylabel("L Statistic");
isis> plot(fold.prd,fold.lstat);

Xronos has epoch folding, various IDL
routines can be found on the web.

Read the literature on significance levels!



Reiterating Words of Advice:
CIAO tools, dmextract & axbary, can be used to create lightcurves, or ...

... create directly via scripts.  (Tools require less customization for, e.g., GTI.)

Bin lightcurves on integer multiples of “natural” time scales

Lightcurves can be directly fit in ISIS, Sherpa, or XSPEC (latter most difficult).

Do FFTs with evenly spaced bins (Lomb-Scargle for unevenly spaced bins), and avoid 
data gaps (see literature if dealing with gaps).  PSD can be fit in ISIS, Sherpa, ...

Beware of signals on “characteristic time scales” (spacecraft, Earth, ...)

Large literature with many techniques & statistics.



References for Further Reading

van der Klis, M. 1989, “Fourier Techinques in X-ray Timing”, in Timing Neutron Stars, 
NATO ASI 282, Ögelman & van den Heuvel eds., Kluwer

Press et al., “Numerical Recipes”  (Discussions only!  Better code exists on the web!)

Leahy et al. 1983, ApJ, 266, p. 160        (FFT & PSD Statistics)

Leahy et al. 1983, ApJ, 272, p. 256        (Epoch Folding)

Davies 1990, MNRAS, 244, p. 93            (Epoch Folding Statistics)

Vaughan et al. 1994, ApJ, 435, p. 362   (Noise Statistics)


