Version 1.0

5 March 2001

Chandra X-ray Center
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge, MA 02138
USA

WWW: http://asc.harvard.edu/

ii

Contents

Contributors xiii
Preface and Acknowledgements XV

I Introduction to TCD 1
1 Overview of TCD 3
1.1 What is TCD 7 o 3
1.2 Organization of this Guide 4
1.3 Input file considerations e e 4
14 aconuolve L 4
1.4.1 Parameters to set L oL e 4

1.4.2 Running the task 5

1.5 ACTOSSCOTT . .« « v e v e et e e e e e e e e s e e 5
1.5.1 Parameterstoset 5

1.5.2 Running the task e 6

1.6 APOWETSPECETUIMN, « . . o v v v v v v e 6
1.6.1 Parameterstoset e 6

1.6.2 Running the task e 7

1.7 atransform NOT CURRENTLY RELEASED 7

iii

iv CONTENTS

1.7.1 Parameterstoset 7

1.7.2 Running the task e 7

1.8 esmooth L e e e 8
1.8.1 Parameterstoset 8

1.8.2 Running the task e 9

II TCD Cookbook 11
2 Convolve 13
2.1 Description Lo e 13
2.2 Parameters Lo e 13
2.2.1 Input and output specifiers 13

2.2.2 Processing parameters Lol 14

2.3 Side effects and Restrictions Lo 15
2.4 Example 1 o 16

3 Crosscorrelate 19
3.1 Description Lo e 19
3.2 Parameters Lo e 19
3.2.1 Example: Cross correlation oL 19

3.3 Example: Auto-correlation L 21

4 Powerspectrum 25
4.1 Description Lo e 25
4.2 Parameters Lo e 25
4.3 Example L 26

5 Transform - NOT CURRENTLY RELEASED 29

CONTENTS

5.1 Description e e e e e e e e e
5.2 Parameters Lo e
5.2.1 Filenames
5.2.2 Processing parameterso o e e
5.3 SYNtax . . . e e e e e e e e e e e e
5.4 FET . e
5.4.1 Paddingo
5.4.2 Sideeffects and Restrictions o
5.4.3 Example 1. . . . o o o e e e e e e
6 Csmooth
6.1 Description Lo e
6.1.1 Parameters e e
6.2 Example e e e e e e e

III TCD Theory

7 Theory

7.1 aconvolve e e e e
7.2 Correlation e e
7.3 Power Spectrum
7.4 Transforms
7.5 Csmooth: Adaptive Smoothing L

7.5.1 Introduction

7.5.2 Characteristics of ASMOOTH ittt

7.5.3 Description of the algorithm o oo

29

29

29

30

30

30

31

31

31

35

35

35

36

43

45

CONTENTS

vi
IV TCD Reference Manual 55
8 TCD Tools: Input Parameters & Data Products 57
8.1 aconuolve L L 57
8.1.1 aconvolve: input parameter file - with default values 57
8.1.2 aconvolve: Input Parameter Description 58
8.1.3 aconvolve: Data Products Description 63
8.2 ACTOSSCOTT . . o v v v e v i e et e e e e e e e e e 63
8.2.1 acrosscorr: input parameter file - with default values 63
8.2.2 acrosscorr: Input Parameter Description Lo oL, 63
8.2.3 acrosscorr: Data Products Description 65
8.3 APOWETSPECTTUIN« .« . . o o o i e e e e e e e e e e e e 66
8.3.1 apowerspectrum: input parameter file - with default values 66
8.3.2 apowerspectrum: Input Parameter Description. 67
8.3.3 apowerspectrum: Data Products Description 69
8.4 AETAnsfoTmM e e e e e e e e e e 69
8.4.1 atransform: input parameter file - with default values 69
8.4.2 atransform: Input Parameter Description 70
8.4.3 atransform: Data Products Description 73
8.5 csmooth L 73
8.5.1 csmooth: input parameter file - with default values 73
8.5.2 csmooth: Input Parameter Description 74
8.5.3 csmooth: Data Products Description L. 7

Bibliography 79

List of Figures

2.1

2.2

3.1

3.2

3.3

4.1

5.1

6.1

6.2

6.3

6.4

HRC-I simulation with extended source 17
A smoothed version of the HRC simulation 18
Input maps for cross correlation 20
The crosscorrelation of two similar fieldso oo 22
An example of an auto-correlation output.o oL 23
Output maps from HRC powerspectra 27
An ACIS simulation of 6 unresolved sources plus an extended source. 32
An ACIS simulation of 6 unresolved sources plus an extended source 37
An ACIS simulation after running adaptive smoothing.00 40
The scale map for ecsmooth on an ACIS simulation. 41
The significance map for csmooth on an ACIS simulation. 42

vii

viii LIST OF FIGURES

List of Tables

LIST OF TABLES

Contributors to this document

Margarita Karovska Lead Scientist

Ken Glotfelty Software Engineer

H. Ebeling Originator of the Asmooth algorithm
D. E. Harris Editor, TCD User Guide

Joan Flanagan Document Series Production (ASC)
R. Kilgard Document Series Production (ASC)

D. Martinez-Galarce Beta tester
Y. Zhou Software Developer

xi

xii

Preface and Acknowledgements

This Guide is designed to serve as an introduction, user’s guide, and a reference manual to the TCD suite
of transforms and convolutions.

We gratefully acknowledge the aid and support of various members of the Chandra project including Science
Data Systems group, and the Data Systems group.

- Margarita Karovska, March 5, 2001

xiii

Xiv

Part I

Introduction to TCD

Chapter 1

Overview of TCD

1.1 What is TCD ?

Transforms-Convolutions-Deconvolutions (TCD) is a package of advanced analysis tools. The tools are
designed as stand-alone tasks, although they also function as a library for use in other programs. The TCD
package is expected to evolve with the addition of new tools from time to time. Currently, the following
tasks are operational:

aconvolve: a convolution performed either in the map or Fourier plane; available functions include a box, a
Gaussian, and a tophat; a user supplied file may also be used.

acrosscorr: cross correlation and autocorrelation
apowerspectrum: a power spectrum
atransform: a fast Fourier transform; other functions will be added. (NOT CURRENTLY RELEASED.)

csmooth: a set of smoothing algorithms. Currently it includes only ’asmooth’, an adaptive smoothing code
(Ebeling, 1999). Other functions will be added in the future.

For each of these tools we include a brief desription of the purpose of the tool and instructions on how to
use it in a very basic way. Examples are given in Part II and the algorithm descriptions are given in Part
III. All of the tools are designed to operate on image files, so if a 1-D input is desired, the user should be
familiar with the DataModel filtering schemes.

4 Chapter 1. Overview of TCD

1.2 Organization of this Guide

The TCD User Guide is divided into four parts:

I - This introduction

II - a cookbook with examples

IIT - the theory section describing the algorithms, and

IV - the reference section which describes the details on input parameters and data products.

1.3 Input file considerations

All the TCD tools only know how to deal with images. They can have any number of dimensions, but
they still must be images. The user is advised to consult the DataModel documentation to ensure that the
corrent syntax is used.

1.4 aconvolve

This is a simple smoothing tool with options for a Gaussian function, a tophat, a user defined kernel, or a
user supplied map.

1.4.1 Parameters to set

infile

This should be an image; either in a FITS file or an iraf ".imh’ file.

kernelspec

The generic syntax for kernelspec is:

key:parameters:origin

where ’'key’ is a filename, ’txt’, or ’lib’. If the filename option is chosen, that file will be the convolving
function. The ’txt’ option allows an ASCII description of a function, and ’lib’ allows a choice among
'box’, ’gaus’, and ’tophat’ (from the library). The parameter specification will be described elsewhere (see
section 8.1.2) and ’origin’ is used to describe the placement of the convolving function. For a simple Gaussian
smooth, we use lib:gaus(2,8,1,2.12,2.12); the leading "2’ is for two dimensions, the '8’ specifies how large to
make the convolving function (in units of o), the '1’ is the normalization, and the last two values are the o
of the Gaussian in pixels.

method

There are two values permitted for this parameter: ’slide’ and ’fft’. The default is ’slide’ which is a brute
force convolution in the map plane and the latter is a Fast Fourier Transform implementation. If the data

1.5. acrosscorr 5

array is small (less than 512) you can safely use ’slide’. Choosing ’fft’ results in faster running, but with
limited memory available, a segmentation violation may occur.

outfile

This is the filename for the output.

1.4.2 Running the task

For an initial test run, select an image that is not too large; say 512x512 or less. Check your setup, enter
the necessary parameters, check the parameter file, and run the tool.

unix: which aconvolve

/home/ascds/DS.release/bin/aconvolve

unix: pset aconvolve infile=hrc_b8_250.fits

unix: pset aconvolve kernelspec= "lib:gaus(2,8,1,2.12,2.12)"
unix: pset aconvolve outfile=hrc_smo8.fits

unix: plist aconvolve

unix: aconvolve

The output image is a smoothed array. Note that the convolved image does not conserve counts, even when
the normalization of the kernel is set to one.

1.5 acrosscorr

acrosscorr is a simple tool to perform an autocorrelation of an image, or to cross correlate two images.

1.5.1 Parameters to set

infilel
The filename of the first input image.
infile2

The filename of the second input image. If an autocorrelation of infilel is desired, infile2 should be set
to 'none’.

outfile
The name to assign to the output file.

center

6 Chapter 1. Overview of TCD

Setting center to 'yes’ will cause the zero-offset point to be in the center of the output image.

1.5.2 Running the task

Select an image, check your setup, enter the necessary parameters, check the parameter file, and run the
tool.

unix: which acrosscorr
/proj/cm3/Release/install.R4CU3/bin/acrosscorr

unix: pset acrosscorr infilel="../120Bdew256.fits"

unix: pset acrosscorr infile2="../120Bdew256_10_smo.fits"
unix: pset acrosscorr outfile="cross120Bdew0_10.fits"
unix: pset acrosscorr center=yes

unix: plist acrosscorr

unix: acrosscorr

In this simple example, we cross correlated an image of 3C 120 containing counts with a smoothed version
of the same image. Since the smoothing function was larger than the source structure, the cross corellation
image reflected the size of the smoothing function and was circularly symetrical to first order.

1.6 apowerspectrum

The power spectrum of a function or distribution is the square of the amplitude of the Fourier transform.
The current implementation employs a FFT and is designed to work on multi-dimensional images.

1.6.1 Parameters to set

infilereal
This is the filename of the real component of the input data.
infileimag

This is the filename of the imaginary component of the input data. For normal data, this entry should be
‘none’.

outfile

The desired name of the output file.

1.7. atransform NOT CURRENTLY RELEASED 7

1.6.2 Running the task

The tool is designed to run on images of arbitrary size, but for test runs, we suggest choosing an image that
is 512x512 or less. Check your setup, enter the necessary parameters, check the parameter file, and run the
tool.

unix: which apowerspectrum
/home/ascds/DS.release/bin/apowerspectrum

unix: pset apowerspectrum infilereal=120Bdew256.fits
unix: pset apowerspectrum infileimag=none

unix: pset apowerspectrum outfile=powl120.fits

unix: plist apowerspectrum

unix: apowerspectrum

The output map displays the amplitude of spatial frequencies which, if there is a dc signal (i.e. one or more
strong sources), will be largest close to the origin (and aliased to other corners of the array).

1.7 atransform NOT CURRENTLY RELEASED

Eventually, this task will contain several different types of transforms. Currently, the only implementation
is the fast Fourier transform.

1.7.1 Parameters to set

infilereal, infileimag

Normally, when doing a forward transform, the real input will be the data map and the imaginary part will
be “none” (the default value). However, when reversing the direction, both parts must be specified.

outfilereal, outfileimag

Both of these names should be specified.

1.7.2 Running the task

Select an image, check your setup, set the filenames, check your parameter file, and run the program.

unix: which atransform
/home/ascds/DS.release/bin/atransform

unix: pset atransform infilereal=4c41_b8_512_sm20.fits
unix: pset atransform outfilereal=atran_4c4lsm.fits
unix: pset atransform outfileimag=atrani_4c4lsm.fits

8 Chapter 1. Overview of TCD

unix: plist atransform
unix: atransform

The output image shows the non-vanishing amplitudes of spatial frequencies clustered around zero (and,
from aliasing, the other corners of the image).

1.8 c¢smooth

csmooth is an implementation of an adaptive smoothing code ("TASMOOTH’) conceived by Ebeling et al.
(2000). Adaptive smoothing is a technique which adjusts the size of the smoothing kernal to match the
local surface brightness (e.g. counts per pixel) so that some user defined significance level will be achieved
throughout the image. Thus in regions of high brightness, the smoothing function is of a small scale; while
at low brightness, the function automatically increases to larger scales.

At the present time, the code contains only two options for the smoothing kernal: a tophat or a circularly
symetric Gaussian. The computation is done either by brute force (’in the map plane’) or by the FFT

method. The former is cpu intensive and users are warned to choose very small arrays initially (e.g. 64x64
or 128x128). The FFT method on the other hand is memory limited.

1.8.1 Parameters to set

There are a large number of parameters under the user’s control to fine tune the operation. Many of these
will be discussed in chapter 6 and section 7.5. Here we give a simple example using default values.

infile

This is the filename of the input image.

outfile

The name for the output file.

outsigfile

This is the name for the output map which has the significance for each output pixel.

outsclfile

The name for the output map which contains the smoothing scale for each pixel.

conmeth

This parameter can have one of two values: ’fIt’ or ’slide’. The ’slide’ option operates in the map plane and
take a long time to run unless the arrays are very small. The edges are dealt with by renormalizing the the

convolving function as it runs off the edge of the map to compensate for the reduced area. The ’fft’ option
is much faster, but the edges are wrapped and thus artifacts are often present near edges.

1.8. csmooth 9

1.8.2 Running the task

Select an image, check your setup, enter the necessary parameters, check the parameter file, and run the
tool.

unix: which csmooth
/proj/cm3/Release/install.R4CU3/bin/csmooth

unix: pset csmooth infile="../acis_128_pts.fits"

unix: pset csmooth outfile='"cs_acis_128_pts.fits"
unix: pset csmooth outsigfile='"csig_acis_128_pts.fits"
unix: pset csmooth outsclfile="cscl_acis_128_pts.fits"
unix: plist csmooth

unix: csmooth

This run on a 128 image took 39 minutes on a SUN SPARCstaion 5. If we had not used the FFT method,
it would have been considerably longer.

The low levels of the smoothed result show some unexpected asymetries. The significance map shows evidence
of aliasing and computational effects at low levels.

10

Chapter 1.

Overview of TCD

Part 11

TCD Cookbook

11

Chapter 2

Convolve

2.1 Description

aconvolve is an open-iraf C program and is used to convolve an N-dimensional image with a kernel. The
kernel can be specified as either a file (image), a function, or specified on the command line. Other than
memory restrictions of the machine, there are no limits to the size or dimensionality of either the kernel or
image (i.e. kernel could be larger than image).

The convolution of a data set with a kernel yields a measure of "how much” the data set looks like the kernel
at every location in the data set. Another way to think about the convolution operation is a filtering of the
dataset by the kernel.

The input parameter file controls the type of convolution. The following convolution methods are imple-
mented:

e Sliding Cell
e FFT convolve

The ’sliding cell’ is a ’brute-force’ method which operates in the map plane whereas the FFT is just the
usual Fourier Transform method. The former requires more cpu time for larger arrays.

2.2 Parameters

2.2.1 Input and output specifiers

infile, outfile

The input is commonly a FITS image but other formats supported by the DataModel such as IRAF .imh
files are also possible. The input image can have any number of dimensions.

13

14 Chapter 2. Convolve

The input can have the following data types: ”short” (BITPIX=16), "long” (BITPIX=32), "float”
(BITPIX=-32), and ”double” (BITPIX=-64).

The output file is a FITS image which has the same dimensions as the input image. The output data type
is always "float” (BITPIX=-32).

kernelspec
The convolving function (a.k.a. 'kernel’) can be defined in three ways: as a call to the library functions, as

a user-provided file, or as an ASCII descriptor. These options, each with its own parameters, are selected
via one input parameter, kernelspec. The generalized syntax is:

<key>:<parameters>:<origin>

Where ’key’ can take on one of the three values: ’file’, 'txt’, or 'lib’. The possibilities for 'parameters’ are
determined by which ’key’ is chosen, and the ’origin’ specification is often not necessary, but can be useful
for particular choices. A more extensive description of kernelspec is given in section 8.1.2.

writekernel, kernelfile

If the user wants to obtain a file with the kernel used (obviously not necessary if key=file), writekernel
should be set to ’yes’ and a filename should be supplied for kernelfile. The default value for writekernel
is 'no’.

writefft, fftroot, center

If files of the Fourier Transform are to be preserved, writefft should be set to ’yes’ and a root filename

should be provided (fftroot). This option will provide the FFT of both the input data and the kernel. The
default for writefft is 'no’. The parameter center is currently inoperative.

2.2.2 Processing parameters

edges, const

As the kernel moves across the data, the edge of the kernel may fall off the data space. When this happens
the program needs to know how the user wants to handle the edges. Four methods for handling the edges
are implemented: For the 4 cases described below, consider the following example data space: data = 1, 2,
3.

edges = wrap
When the kernel runs off the data space, it is wrapped around the data. Thus the data go ...1,2,3,1,2,3,1,2,3...
edges = nearest

When the kernel runs off the data space, extrapolate the data nearest to the edge, e.g. data go
.1,1,1,2,3,3,3,3.3...

2.3. Side effects and Restrictions 15
edges = mirror

When the kernel runs off the data space, reflect the data nearest the edge, e.g. data go ...3,2,1,1,2,3,3,2,1...
edges = constant

When the kernel runs off the data space, use the constant supplied by the const parameter (e.g. const=0)
therefore the data go ...0,0,1,2,3,0,0,..

Implicitly, using the FFT method of convolution implies wrapping edge treatment.
method

There are two options for the calculation: ’slide’ and ’fft’. If the user is satisfied with edges=wrap, the fft
option is preferred since it is faster and will produce the same results.

Sliding cell convolution is convolution from first principles.

O(al,a2,...aN) = S_x1 S_x2... S_xN I(x1,x2,..xN)*K(al-x1,a2-x2,...aN-xN).

[replace S_x buy summation signs]

For the FFT method, the Fourier Transform of the data and the kernel is computed. The arrays are multiplied
and the inverse FFT is taken. Internally the kernel and data MUST be the same size. The program will pad
the smaller with 0’s. If the edges of the data are "wrapped” (see below) then the FFT and slide methods
will yield the same results.

pad

The user can specify that the data be padded such that the length of each data axes is promoted to the next

integer power of 2. The data are always padded on the "right” hand side, thus the array 1,2,3,4,5 would be
padded to 1,2,3,4,5,0,0,0.

2.3 Side effects and Restrictions

All computations are done in single floating point precision.
If the program fails for some reason, it will exit and return with a status not equal to zero.

For the FFT method, if arrays are too large for the memory available, a segmentation fault or ERROR
message about memory allocation may occur.

The current version of aconvolve does not conserve counts even when the normalization of the kernel is set
to one.

16

2.4

Chapter 2. Convolve

Example 1

We wish to smooth a Chandra simulated image which is a 512x512 primary FITS image as seen in figure 2.1.

We check the setup, set the parameters, view the parameter file and run the program.

unix:

which aconvolve

/proj/cm3/Release/install.R4CU3/bin/aconvolve

unix:
unix:
unix:
unix:
unix:

pset aconvolve infile ="../hrcib12ext.fits"

pset aconvolve kernelspec ="lib:gaus(2,5,1,10,10)"
pset aconvolve outfil=hrcibl2ext_10.fits

plist aconvolve

aconvolve

This run took 5 hours on a SPARCstation 5. If the fft option had been chosen, it would have been much
faster. In this example we chose a Gaussian kernel from the library. The 5 numerical parameters are ’2’ for
the number of dimensions, ’5’ for the size of the kernel in units of o, '1’ for the amplitude of the kernel, and
a 10 for the x and y values of o for the kernel (in pixels).

The results are shown in figure 2.2.

2.4. Example 1 17

.
-
'
- . - 1
"
a 0
o 3 .
o "
'
. L}
' ; 2
= = .
. - . '
" o
. = s 2.
o L] B
LI
"
.
e o
= o
o . '
' B 1 -
8o ' "
L L}
- - . N
. '
=~ -
.
@ . =
.
h - Bl -
.
. -
s La T
B -
. - . '
. o i
B ' Y .
' o . "
;o
- - - -
& L}
.
'
'
'
' o
- -
-0 -
. 5

Figure 2.1: An HRC simulation with 6 point sources in a line plus an extended Gaussian source with a o of
25 arcsec.

18 Chapter 2. Convolve

FoHI00E:19, 25 J2000 (362,00 488,00 1,63117

Figure 2.2: The results of running aconvolve with a Gaussian kernel with 0=10 pixels on the HRC simulation.

Chapter 3

Crosscorrelate

3.1 Description

The tool acrosscorr performs a cross correlation or an auto-correlation using Fourier transforms. For a cross
correlation, the two input images should have the same number of dimensions.

3.2 Parameters

There are very few parameters for this simple tool.
infilel, infile2, and outfile

For a cross correlation, provide the appropriate names for the two input images. If infile2 is set to 'none’,
this is the switch which produces an auto-correlation instead of a cross correlation.

crop, pad, and center
These 3 boolean parameters (values of 'yes’ or 'no’) provide the only choices for this tool. If crop is set to
'yes’, the output image is cropped to the size of infilel. If pad is set to ’yes’, the input data are padded to

the size of infilel + infile2. If center is set to ’yes’, then the zero shift point appears in the center of
the output map rather than in the corner (at pixel 1,1).

3.2.1 Example: Cross correlation

In figure 3.1 we show the two input maps. The first consists of 6 sources in a line, The first two are separated
by only 0.5 arcsec so appear as a single source with the HRC. The next two are separated by one arcsec, and
produce a clearly extended distribution. The second image contains the same 6 sources but has in addition

19

20

Chapter 3. Crosscorrelate

Figure 3.1: Simulated HRC data. The first field has 6 unresolved sources in a line. The other field shows
the second input image which has the same sources but in addition, has an extended source.

an extended source centered at the same position as the sixth unresolved source. As can be seen, the lines
of sources are not at the same pixel location in the images.

We check the setup, set the relevant parameters, review the parameter list, and run the program.

unix:

which acrosscorr

/proj/cm3/Release/install.R4CU3/bin/acrosscorr

unix:
unix:
unix:
unix:
unix:

pset acrosscorr infilel="../hrcib12pts.fits"
pset acrosscorr infile2="../hrcibl2ext.fits"
pset acrosscorr outfile=cross_hrcbl2pts_ext.fits
pset acrosscorr center=yes

plist acrosscorr

Parameters for /home/user/ascds_iraf/uparm/acrosscorr.par

#

acrosscorr.par file

#

inputs

#
infilel = ../hrcib12pts.fits Input file name #1
infile2 = ../hrcibl2ext.fits Input file name #2. Use none for

autocorrelate

#

output

#

outfile = cross_hrcbl2pts_ext.fits OQutput file name

3.3. Example: Auto-correlation 21

#
processing params
#
(crop = no) Crop output to size of infilel
(pad = no) Pad data to size of infilel +
infile2
(center = yes) Center output
#
user
#
(clobber = yes) Clobber existing output file
(verbose = 0) Debug level
(kernel = default) Output format kernel
#
mode
#
(mode = ql)

unix: acrosscorr

Input file name #1 (../hrci512pts.fits):

Input file name #2. Use none for autocorrelate (../hrcibl2ext.fits):
Output file name (cross_hrcb512pts_ext.fits):

The resulting map is shown in figure 3.2.

3.3 Example: Auto-correlation

We take the same images shown in figure 3.1 to illustrate the auto-correlation simply by setting infile2
= none. The results for the field containing the extended emission are shown in figure 3.3. A similar run
on the other field (without the additional extended source) produces essentially the same pattern, but the
absolute value of the correlation peak is lower and, without the extended source, the lower levels (away from
the main line of correlation features) are a smaller percentage of the peak value.

22 Chapter 3. Crosscorrelate

Figure 3.2: The results of acrosscorr run on the two fields shown in fig. 3.1. Since center was set to ’yes’,
the maximum correlation occurs towards the upper right at a distance from the center corresponding to the
shift necessary so that the array of 6 unresolved sources in map 2 are aligned with their counterparts in map
1.

3.3. Example: Auto-correlation 23

Figure 3.3: The auto-correlation image for the HRC example of 6 unresolved sources plus an extended source.
Since center was set to 'yes’, the peak occurs at the map center.

24

Chapter 3. Crosscorrelate

Chapter 4

Powerspectrum

4.1 Description

apowerspectrum uses an FFT on an N-dimensional image and produces the square of the amplitudes for the
frequency components of the transform.

4.2 Parameters

infilereal, infileimag, outfile

These filenames are required, although 'none’ is the default for infileimag, the imaginary part of the input.
The usual DataModel conventions are followed for input and output.

pad

This is boolean parameter. If set to ’yes’, then the input data will be padded in each dimension to attain
the next power of two.

center

Setting center to 'yes’ causes the zero frequency point to be at the center of the output array.

scale

This parameter simply determines the absolute value of the output map. The choices are ’linear’ (which is
the default) meaning simply the square of the amplitude of the frequency components; "log’ which gives the
logorithm to the base ten; and ’db’ ('decibels’) which gives 10 times the log value.

crop

25

26

Chapter 4. Powerspectrum

If crop is set to ’yes’, only frequencies up to the Nyquist frequency will be output.

4.3 Example

To examine the distribution of spatial frequencies in the maps used in chapters 2 and 3, we make a power
spectrum for the array of 6 point sources, the same plus the extended source; and the smoothed version of
the latter. These input maps are shown in figures 3.1 and 2.2.

One of these runs was performed thusly:

unix: which apowerspectrum

/proj/cm3/Release/install.R4CU3/bin/apowerspectrum

unix:
unix:
unix:
unix:

pset apowerspectrum infilereal=’’../hrcib12ext.fits’’
pset apowerspectrum outfile=’’pow_hrcibl2ext.fits’’
pset apowerspectrum center=yes

plist apowerspectrum

Parameters for /home/user/ascds_iraf/uparm/apowerspectrum.par

#
#
#
#
#

H*

HH*

+*

HH*

apowerspectrum

inputs

infilereal =
infileimag =

output
outfile
processing
(pad

(center
array

(scale =
(crop =

user

(clobber =
(verbose =
(kernel =

mode

(mode

tool

../hrcibl2ext.fits Input file name for real part

none

Input file name for imaginary part

pow_hrcibl2ext.fits File name for output

no)
yes)

linear)
no)

yes)
0)
default)

ql)

Pad data array to next power of 2
Center 0 frequency at center of

Output scale
Crop output at Nyquist frequency

Delete existing output
Debug level
Output format kernel

4.3. Example 27

Figure 4.1: Power spectra of HRC simulations. The first map is for the line of 6 unresolved sources. The
second is for the same sources but with an extended source added. The last map is the same as the second
except it has been smoothed with a Gaussian of 0=10 pixels. The peak amplitudes are 5.82, 52.6, and
2x107, respectively. The noise level in the first two maps is ~0.1, but in the last it is <10~'!. Inserts show
the central region in more detail.

unix: apowerspectrum

Input file name for real part (../hrcibl2ext.fits):
Input file name for imaginary part (none):

File name for output (pow_hrcibl2ext.fits):

The resulting maps are shown in figure 4.1. Since we set center="yes’, the non-zero amplitudes of spatial
frequencies appears at the center of the maps. The basic spatial frequency structure of an individual source
is represented by the distribution in PA=45°. In PA -45° there is more structure caused by enhancement
of those frequencies which correspond to the source placement along the line. The power spectrum of the
smoothed map is essentially noise free and the the size of the region containing significant amplitudes is
significantly reduced.

28

Chapter 4. Powerspectrum

Chapter 5

Transform - NOT CURRENTLY
RELEASED

5.1 Description

Transform is an open-iraf C program and is used to compute various mathemtical transforms of an input
data array.

The available transforms are:

e Fourier Transform

Additional functions will be added in the future. The transform and direction parameters control the type
of transform.

5.2 Parameters

5.2.1 Filenames

infilereal, infileimag
The input files are FITS images or IRAF .imh files. The input images can have any number of dimensions.

The input can have the following data type: "btye” (BITPIX=8), "short” (BITPIX=16), "long” (BIT-
PIX=32), "float” (BITPIX=-32), and "double” (BITPIX=-64).

The real and imaginary parts are input seperately. If there is no real or imaginary part, then set the
appropriate file name to "none” or "NONE”.

29

30 Chapter 5. Transform - NOT CURRENTLY RELEASED

Currently, there MUST be a real part to the data. The imaginary part can be "none”.
outfilereal, outfileimag

Two output data files are produced. They are both FITS images; the data type is always "float” (BITPIX=-
32). There is one file for the real part of the transform and one for the imaginary part of the transform.

5.2.2 Processing parameters

transform
At this time the only allowed value is 'fft’, and this is the default value.
direction

This parameter determines the sense of the transform. The two allowed values are 'forward’ and ‘reverse’.
The default value is forward’.

pad

This parameter can either be 'no’ (the default) or 'yes’. The latter value will cause each data axis to be
padded with zeros (on the ’right hand’ side) so that the dimension of each axis is a power of two.

center

The default for center is 'no’, and this causes the zero frequency point to be located at pixel zero. Setting
center to 'yes’ causes the zero frequency location to be at the center of the output array.

5.3 Syntax

Compute the N-D FFT of the data in the file my_data.fits and save the real + imagainary parts in
my_out_xxxx.fits.

transform infilereal=mydata.fits infileimag=none
outfilereal=myoutreal.fits outfileimag=myoutimag.fits
transform=fft direction=forward

54 FFT

The Fast Fourier Transform (FFT) (invoked by setting transform = ’fft’) computes the discrete Fourier
Transform of a dataset with respect to one or more axes.

5.4. FFT 31

By standard convention, in the forward direction the sign of the complex exponential is negative and in
the reverse direction the sign of the complex exponential is positive. In the forward direction, the data are
normalized by the area of the data.

The FFT algorithm was adapted from the STSDAS FFT routine converted from FORTRAN to C and made
to work in multiple dimensions.

5.4.1 Padding

Although the algorithm works on datasets of any length, to sped up the process the user can specify that
the data be padded such that the length of each data axes is promoted to the next integer power of 2. The
data are always padded on the ”right” hand side, thus the array 1,2,3,4,5 would be padded to 1,2,3,4,5,0,0,0.

5.4.2 Sideeffects and Restrictions

All computations are done in single floating point precision.

If the program fails for some reason, it will exit and return with a status not equal to zero.

5.4.3 Example 1

Suppose we wish to determine the spatial frequencies of the ACIS simulation shown in figure 6.1.

We set the relevent parameters, check the complete parameter file, and run the program:

unix: which atransform
/proj/cm3/Release/install.R4CU3/bin/atransform

unix: pset atransform infilereal="../Smooth/acis_128_extmap.fits"
unix: pset atransform infilereal="../Smooth/acis_128_extmap.fits"
unix: pset atransform outfilereal="tr_acisl28ext.fits"

unix: pset atransform outfileimag="ti_acisl28ext.fits"

unix: plist atransform

Parameters for /home/user/ascds_iraf/uparm/atransform.par

#
atransform.par file
#
inputs
infilereal = ../Smooth/acis_128_extmap.fits Input file name for
real part
infileimag = none Input file name for imaginary part
#
outputs

Chapter 5. Transform - NOT CURRENTLY RELEASED

32

| II llll% -
. e .
-I. - - u
. 1
g watr_mL
I- IIII I- Irh-ll
1

[
Tor IR A e ="

a1"”.“.m.w.“...q””__

s - .

LR R

n I5 II .
Y e e N
III 4...'.. II-II
.-I I“"r. “l."JI

o

Figure 5.1: A 128x128 ACIS simulation containing 6 unresolved sources in a line plus an extended source.
Only 4 discrete sources are visible since the close separation for two pairs is not resolvable by ACIS.

54. FFT 33

outfilereal = tr_acis128ext.fits File name for real part of output
outfileimag = ti_acis128ext.fits File name for imaginary part of

output
#
processing parameters
#
transform = fft Transform type
direction = forward Transform direction
(pad = no) Pad data array to next power of 2
(center = no) Center 0 frequency at center of
array
#
user preferences
#
(clobber = yes) Delete existing output
(verbose = 0) Debug level
(kernel = default) Output format kernel
#
mode
#
(mode = ql)

unix: atransform

Input file name for real part (../Smooth/acis_128_extmap.fits):
Input file name for imaginary part (none):

File name for real part of output (tr_acisl128ext.fits):

File name for imaginary part of output (ti_acis128ext.fits):
Transform type (fft) (fft):

Transform direction (forward|reverse) (forward):

NOTE: we cannot finish this example until the center option is repaired. deh 11 July 1999.

34

Chapter 5. Transform - NOT CURRENTLY RELEASED

Chapter 6

Csmooth

6.1 Description

csmooth is a tool to perform adaptive smoothing. If normal smoothing is required, the user should use
aconvolve (chapter 2). The basic premise of adaptive smoothing attempts to adapt the size of the smoothing
kernel to the local s/n ratio. Thus in regions containing strong point sources, a small kernel is used preserving
the inherent resolution of the data. For lower brightness regions (e.g. extended sources or the background)
the size of the kernel increases, usually attempting to include enough counts so as to achieve a specified
s/n ratio. In this chapter we give a simple example. Users are urged to explore the potential of the tool
by experimenting with adjustment of hidden parameters (see section 8.5.2 or the help file for parameter
description).

This version of esmooth is based on H. Ebeling’s IDL code called ’ASMOOTH’. The code is now in C and
modifications have been made to permit the use of FFTs which are much faster but have the disadvantage
that they may introduce artifacts because the only possible edge treatment is wrapping. The sliding cell
convolution provides an option to use a renormalization routine for dealing with image edges which compen-

sates for that fraction of the kernel which is outside the image, thus ensuring that no artifacts are introduced
at the field edges.

6.1.1 Parameters

Here we consider the parameters required to run a simple example. For a complete description of all
parameters see section 8.5.2.

infile
This is the designation of the 2D image for the input.
outfile, outsigfile, outsclfile

The result of running csmooth is outfile. outsigfile is a map containing the significance of each pixel in

35

36 Chapter 6. Csmooth

outfile. The scale size of the kernel used at each pixel is given in outsclfile.
conmeth

This parameter can have the value 'fft’ (the default) or ’slide’. In the former case the FFT method is used
and in the latter case, a brute force implementation is used. Note that designating 'fft’ means that the data
are wrapped around to pad the edges so as to accommodate the kernel as it moves toward the edge of the
original data. For the ’slide’ method, the edges are padded with the particular constant=0, but the kernel
is renormalized to compensate for the smaller area of the actual (non-zero) data.

The FFT method requires substantial memory resources whereas the slide method requires a longer run
time. For these reasons, we suggest that first time users choose a small array (e.g. 128x128) and, if FFT is
chosen, to select an array with dimensions that are 2%V in size.

conkerneltype

The convolving function can be either 'gauss’ or "tophat’

6.2 Example

To illustrate csmooth we take a subimage from an ACIS simulation. This is a 128x128 map which has 6
unresolved sources in a line, and an extended source comprised of a Gaussian with o = 25" (see Figure 6.1).

We check the setup, set the parameters, examine the parameter file, and run the program.

unix: which csmooth

/soft/ciao/bin/csmooth

unix: pset csmooth infile="../acis_128_ext.fits"
unix: pset csmooth outfile="cs_acis_128_ext.fits"
unix: plist csmooth

Parameters for /home/user/cxcds_param/csmooth.par

#
csmooth.par file
#
#
infile = ../acis_128_ext.fits input file name (raw image)
outfile = cs_acis_128_ext.fits output file name (adaptively smoothed image)
outsigfile = . output file name (image of the significance of the signal at each loc
outsclfile = . output file name (image of the smoothing scales [kernel sizes] used a
#
processing parameters
#
conmeth = fft Convolution method.
conkerneltype = gauss Convolution kernel type.
#

Significance numbers

37

6.2. Example

R

[
. . ..r_..... e =

A ".._ -

Illl 5 [|
i ag T A

" n "
ll.“l%l-lklll qll.lll%lll -II

I 1, " b =y

......“. - .ﬂ..__l..“._.“

Figure 6.1: A 128x128 ACIS simulation containing 6 unresolved sources in a line plus an extended source.
Only 4 discrete sources are visible since the close separation for two pairs is not resolvable by ACIS.

38 Chapter 6. Csmooth

#
sigmin = 4 minimal significance (S/N ratio) of the signal under the kernel
sigmax = 5 maximal significance (S/N ratio) of the signal under the kernel
#
Scales
#
sclmin = INDEF initial (minimal) smoothing scale in pixel, use INDEF for default (71
sclmax = INDEF maximal smoothing scale, use INEF for default(~image size)
#
User supplied scale map
#
sclmode = compute compute smoothing scales or user user-supplied map
sclmap = input file name (image of user-supplied map of smoothing scales)
(stepzero = 0.01) initial stepsize by which smoothing scale increases
#
background method
#
(bkgmode = local) background treatment
(bkgmap =) input file name (image of user-supplied background)
(bkgerr =) input file name (image of user-supplied background error)
#
user specific comments
#
(clobber = yes) clobber existing output
(verbose = 1) verbosity of processing comments
(kernel = default) kernel of output format
(mode = ql)

unix: csmooth

input file name (raw image) (../acis_128_ext.fits):

input file name (image of user-supplied map of smoothing scales) ():
output file name (adaptively smoothed image) (cs_acis_128_ext.fits):
output file name (image of the significance of the signal at each
location of the smoothed image) (.):

output file name (image of the smoothing scales [kernel sizes] used at
each location of the image) (.):

Convolution kernel type. (gauss|tophat) (gauss):

Convolution method. (slidel|fft) (fft):

initial (minimal) smoothing scale in pixel, use INDEF for default
("1pixel) (INDEF):

maximal smoothing scale, use INEF for default(“image size) ()sclmax)
(INDEF) :

minimal significance (S/N ratio) of the signal under the kermel (4):
maximal significance (S/N ratio) of the signal under the kernel
(Osigmin) (5):

compute smoothing scales or user user-supplied map (compute|user)
(compute) :

Message: edge treatment options will be ignored

6.2. Example 39

smoothing out/in pixels counts significance
n_max m_krnl_min radius diffl cumul done (%) done (%) range
min med max

63.00 63.92 0.188 1.000 1.000 0.01 1.72 4,30 4.30 4.30
(etc).....

3.00 170.57 13.477 1.000 1.000 22.63 58.58 4.00 4.15 4.72

2.00 204.53 14.631 1.000 1.000 25.25 61.15 4.00 4.30 5.01

2.00 199.12 15.315 1.000 1.000 26.42 62.43 4.00 4.14 4.54

CSMOOTH: kernel cannot be larger than image
setting kernel size to size of image
CSMOOTH: remainder will be smoothed on scale of 15.736570
3.00 64.21 15.737 1.000 1.000 100.00 100.00 -14.90 0.54 4.75

This run took 13 minutes on a SUN Ultra 1 and 37 minutes on a SparcStation5. The results are shown
in figure 6.2. This rendition can be compared with the constant kernel implementation of aconvolve, see
figure 2.2. (This is just an illustrative comparison since the pixel size of the HRC is smaller than that of
ACIS.)

The scale map is shown in figure 6.3 and the significance map is shown in figure 6.4.

40

Chapter 6. Csmooth

Figure 6.2: The results of running csmooth on an ACIS simulation.

6.2. Example 41

Figure 6.3: This map shows the scale of the kernel used at each pixel location for the ACIS 128x128
simulation. In the white areas, the scale is 14 to 16 pixels whereas in the darkest area the scale is the
minimum value of 0.188 pixels.

42 Chapter 6. Csmooth

Figure 6.4: For each pixel in the smoothed map, this image shows the significance. Darker areas are higher;
the white areas are negative. Since csmooth is attempting to keep the significance between 3 and 4, there is
not much contrast in the significance map.

Part 111

TCD Theory

43

Chapter 7

Theory

7.1 aconvolve

ASC Name: aconvolve

Desription: Calculate the convolution of one-D or two-D arrays using Slide cell and Fourier transform
methods.

Algorithm:

In the following we give a simple example for a convolution of two 1-d arrays. We assume that the arrays
ware originally shifted from the origin by a and b, respectively, and have been shifted back.

g(k) k=0,1,....,A-1
h(k) k=0,1,....,B-1
A and B are the number of samples in g and h, respectively.

First pad with zeros to a size N>= A+B -1, (if running FFT on power of 2 size arrays then N=2 ~ (where
v is an integer value) then chose the convolution method:

e FFT Convolve
e Slide Cell Convolve
1. Slide Cell Convolve:

To calculate the convolution using the Slide Cell method, calculate the following sum:

45

46

2. FFT Convolve:

N-—-1
2(k) = > [g(n)h(k —n)]

To calculate the convolution using the FFT method:

- Calculate the FFT of g and h:

and then calculate:

-Finally, calculate the convolution by calculating the inverse FFT of Z(n):

Note: (see e.g. Brigham 1974).

7.2 Correlation

ASC Name: acrosscorr

N

G(n) =) g(k)e 2T/
k=0
N

H(n) _ Z h(k)eijﬁnk/N
k=0

N-1
Z(k) — Z [N—IZ*(n)e—j%rnk/N
n=0

Chapter 7. Theory

(7.1)

(7.3)

(7.4)

Desription: Calculate the correlation of one-D or two-D arrays using Fourier transforms. (Special case -

autocorrelation).
Parameters:

Algorithm:

7.3. Power Spectrum 47

The correlation of two finite-length functions g(x) and h(x) with a number of samples A and B, respectively,
can be calculated as follows:

- Assume that g and h are shifted from the origin by a and b, respectively, and are defined as follows:
g(k)=0 k=0,1, N-A

g(k)=g(kT+a) k=N-A+1, N-A+2,..., N-1

h(k)=h(kT+b) k=0,1,....,.B-1

h(x)=0 x=B,B+1,...., N-1

where N is larger or equal to the sum of A+B-1 and N=2 ~ (where v is an integer value)

- Calculate the discrete transforms of g and h:

N

G(n) = g(k)e 7> /N (7.6)
k=0
N

H(n) = Z h(z)e 92 mk/N (7.7)
k=0

- Change the sign in the imaginary part of H(n) to obtain H*(n) and then calculate:

Z(n) = G(n)H"(n) (7.8)
-Finally, calculate the correlation:
N-1
z(k) = Z [N~1Z*(n)e=92mnk/N (7.9)
k=0

Autocorrelation can be calculated using the same algorithm by replacing h with g.

Note: (from E.Oran Brigham ”The Fast Fourier Transform”).

7.3 Power Spectrum

ASC Name: apowerspectrum

48 Chapter 7. Theory

Desription: Calculate the powerspectrum of one-D or two-D arrays using Fourier transforms.
Algorithm:

The powerspectrum of a finite-length function h(x) with a number of samples N can be calculated as follows:
-Calculate the FFT of h(k)

-Calculate the powerspectrum by taking the the modulus-squared of the fourier transform of h(k).

-Normalize in a such a way that the the sum of the pixel values of the power spectrum is equal to the sum
of the squares of the pixel values of the input image.

7.4 Transforms

ASC Name: atransform

FFT

Description:

Calculate the Fast Fourier Transform of N-D dataset with respect to one or more axes.

Algorithm:

Use the IRAF STSDAS code by Phil Hodge. FFTPACK code obtained by Chris Biemesderfer from Argonne
National Lab; math library over Arpanet (via netlib@argonne). Written at NCAR by Paul Swarztrauber in
Apr 85.

OPTIONS:

1. Forward FFT - computes the forward Fourier transform of an image;

2. Inverse FFT - computes the inverse Fourier transform of an image.

7.5 Csmooth: Adaptive Smoothing

7.5.1 Introduction

The ASMOOTH algorithm used in csmooth was conceived and developed by Harald Ebeling, David White
and Vijay Rangarajan. A detailed description of the algorithm and applications to X-ray imaging data can
be found in Ebeling H., White D.A., Rangarajan F.V.N. ASMOOTH: A simple and efficient algorithm for
adaptive kernel smoothing of two-dimensional imaging data, 2000, MNRAS, accepted

Smoothing of two-dimensional event distributions is a procedure routinely used in many fields of data analysis.

7.5. Csmooth: Adaptive Smoothing 49

In practice, smoothing is generally achieved by a convolution

I'(P) = I(F) @ K(F) = IRZIC(F—F’)I(F’)dF’ (7.10)

< K = 1)

of the measured data I(7) with a kernel function K (often also called ‘filter’ or ‘window function’). Although
the raw data may be an image in the term’s common meaning [i.e. the data set can be represented as a
function I(z,y) where I is some intensity, and = and y are spatial coordinates], the two coordinates = and
y can, in principle, describe any two-dimensional parameter space. The coordinates and y are assumed to
take only discrete values, i.e. the events are binned into (x,y) intervals. The only requirement on I that we
shall assume in all of the following is that I is the result of a counting process in some detector, such that
I(z,y) € INp.

An image, as defined above, is a two-dimensional histogram and is thus often a coarse representation of
the underlying probability density distribution (e.g. Merrit & Tremblay 1994, Vio et al. 1994). Although
it is true that binned data contain less information than a discrete event distribution, there are also other
considerations. For certain experiments, an unbinned event distribution may not exist — for instance, if the
x and y values correspond to discrete PHA (spectral energy) channels. Also, there are circumstances where
some binning can be desirable for analysis purposes. For example, in cases where the dynamic range of the
data under consideration is large, the amount of data that need to be dealt with in the analysis can be reduced
drastically by replacing the raw event distribution with image pixels. If the bin size is sufficiently small, the
unavoidable loss of spatial resolution may be a small price to be paid for a data array of manageable size.

Smoothing of an observed, high-resolution image is of interest whenever the observed number of counts per
resolution element of the instrumental set-up (in either x or y) approaches the expected background level.
A practical criterion that tests for this condition is whether the signal (defined as the number of counts per
pixel above the expected background) in the region of interest in & — y space is in the Poissonian regime,
i.e. is less than, or of the order of, 10, after the raw event distribution has been sorted into intervals whose
size matches approximately the instrumental resolution. It is crucial in this context that the observed count
statistics are not taken at face value but are corrected for background: imagine a data set featuring a high
background level. (This background may be internal, i.e. originating from the detector [more general: the
instrumental setup], or external.) In such a case the observed intensity (counts) distribution I(z,y) may be
high across the region of interest, suggesting good count statistics, although the signal above the background
that we are interested in is actually very faint and poorly sampled. The statistics of the observed counts
alone can thus be a poor indicator of the need for image smoothing.

Rebinning the data set into larger, and thus fewer, intervals improves the count statistics per pixel and
reduces the need for smoothing. This is also the basic idea behind smoothing with a kernel of the form

o [1/(wo?) where |[F'| <o
K@ 0) = { 0 elsewhere (7.11)

(circular ‘top-hat’ or ‘box-car’ filter of radial size o), the only difference being that smoothing occurs semi-
continuously (the step size being given by the bin size of the original data) whereas rebinning requires
an additional phase information [the offset of the boundaries of the first bin with respect to some point of
reference such as the origin of the (z,y) coordinate system]. However, when starting from an image binned at
about the instrumental resolution, both rebinning and conventional smoothing share a well known drawback,
namely that any improvement in the count statistics occurs at the expense of spatial resolution.

Although conventional smoothing algorithms usually employ more sophisticated functional forms for the
kernel than the above ‘top-hat’ filter (the most popular probably being a Gaussian), the problem remains

50 Chapter 7. Theory

that a kernel of fixed size is ill-suited for images that feature real structure on various scales, some of which
may be much smaller or much larger than the kernel size. In such a situation, small-scale features tend to
get over-smoothed while large-scale structure remains under-smoothed. Adaptive-kernel smoothing (AKS) is
the generic name for an approach developed to overcome this intrinsic limitation by allowing the kernel to
vary over the image and adopt a position-dependent ‘natural’ size.

AKS is closely related to the problem of finding the optimal adaptive kernel estimator of the probability
density distribution underlying a measured, unbinned event distribution. The advantages of adaptive kernel
estimators for the analysis of discrete, and in particular one-dimensional, astronomical data have been
discussed by various authors (e.g. Thompson 1990, Pisani 1993, Merritt and Tremblay 1994, Vio et al. 1994).
An overview of adaptive filtering techniques in two dimensions is given by Lorenz et al. (1993).

A common feature of all non-parametric adaptive kernel algorithms is that the ‘natural’ smoothing scale
for any given position is determined from the number of counts accumulated in its immediate environment.
Following the aforementioned principle, smoothing occurs over a large scale where few counts have been
recorded, and over a small scale where count statistics are good. AKS algorithms differ, however, in the
prescription that defines how the amplitude of the local signal is to be translated into a smoothing scale.

A criterion widely used for discrete data is that of Silverman (1986). It determines the size, o, of the local
kernels relative to that of some global (i.e. non-adaptive, fixed) kernel (oconst) by introducing a scaling factor
which is the inverse square root of the ratio of the globally smoothed data to their logarithmic mean. For
images, and using the same notation as before, this means

U(F) _ <I(I:0nst(77)>10g (7.12)

where (Il) .« (F)og = dex(logig Lions (7)), and Il (77) represents the convolution of the measured data
with a kernel of fixed size o¢onst- However, whether or not this approach yields satisfactory results depends
strongly on the choice of the global smoothing scale oconsy (Vio et al. 1994). In the context of discrete
data sets, Pisani (1993) suggested a least-squares cross-validation procedure to determine an optimal global
kernel size in an iterative loop. However, for binned data covering a large dynamical range, the dependence
of the result on the size of the global kernel becomes very sensitive indeed, and the iteration becomes very
time-consuming. Also the dependence on the somewhat arbitrary scaling law (eq. 7.12) remains. Other
adaptive filtering techniques discussed recently in the literature include the HFILTER algorithm for square
images (Richter et al. 1991, see also Lorenz et al. 1993) and the AKis algorithm of Huang & Sarazin (1996).

7.5.2 Characteristics of ASMOOTH

The algorithm discussed in more detail in the following, ASMOOTH, is an AKS algorithm for images, i.e.
binned, two-dimensional datasets of any size, which determines the local smoothing scale from the require-
ment that the significance above the background of any signal enclosed by the kernel must exceed a certain,
preset value. The algorithm is similar to AKIS (Huang & Sarazin 1996) in that it employs a signal-to-noise
(s.n.r.) criterion to determine the smoothing scale. However, other than AKiS, ASMOOTH does not require
any initial fixed-kernel smoothing but determines the size of the adaptive kernel directly and unambiguously
from the unsmoothed input data. ASMOOTH also goes beyond existing AKS algorithms in that its s.n.r.
criterion takes the background (instrumental or other) of the raw image into account. This leads to signif-
icantly improved noise suppression in the case of large-scale features embedded in high background (which
may be another real feature at even larger scale). Our approach yields smoothed images which feature a
near-constant (or, alternatively, minimal) signal-to-noise ratio above the local background in all pixels. In

7.5. Csmooth: Adaptive Smoothing 51

contrast to most other algorithms which require threshold values to be set (e.g., for the H coefficients in the
case of the HFILTER technique), ASMOOTH is intrinsically non-parametric. The only external parameters that
need to be specified are the minimal and maximal signal-to-noise ratios (above the background) required
under the kernel.

The simplicity of the determination of the local smoothing scale from the counts under the kernel and
an estimate of the background (which can, but need not be specified by the user) greatly facilitates the
translation of the smoothing prescription into a simple and robust computer algorithm, and also allows a
straightforward interpretation of the resulting smoothed image.

7.5.3 Description of the algorithm

ASMOOTH adjusts the smoothing scale such that, at every position in the image, the resulting smoothed data
values share the same signal-to-noise ratio (s.n.r.) above the background; one may call this the ‘uniform
significance’ approach. The only external parameter required by ASMOOTH is the desired minimal s.n.r.,
Tmin- In order to ensure that statistically significant structure is not over-smoothed to a level of significance
much higher than 7,;;,, a range of signal-to-noise ratios can be specified as a pair of 7,1, Tmax values. Note,
however, that the maximal significance criterion is a soft one and, also, is applied only at scales larger than
the instrumental resolution (which is assumed to be similar to the pixel scale); under no circumstances will
ASMOOTH blur pointlike features (pixels whose significance in the unsmoothed image exceeds Tiin) in order
to bring their significance down below the 7,,x threshold. This implies also that, on the smallest scales,
pixel-to-pixel variations (even insignificant ones) may still exist in the adaptively smoothed image. Besides
the desired significances Tinin, max, estimates of the background Ik, and the associated background error
Al are optional additional parameters.

The background is, by default, measured in an annulus surrounding the smoothing kernel thus providing a
local estimate on the current smoothing scale. However, external background estimates (Ihkg and Alpig)
can be supplied by the user. To allow background variations across the image to be taken into account,
Ik and Al can be supplied as images of the same dimensions as the raw image; in the case of a flat
background Inkg and Al reduce to global estimates of the background and background error per pixel,
i.e., single numbers. Note, however, that features in the adaptively smoothed image will not necessarily be
locally significant at the specified level if an external background estimate is provided.

Internally, the threshold significances Tiin, Tmax are translated into a minimal and a maximal integral number
of counts, Npin, Nmax, to be covered by the kernel. More precisely, the criterion is that

Nuin < I'(F)/K(0,0(7)) < Nmax (7.13)

where o(7) is the characteristic, position-dependent scale of the respective kernel. Npin max i €q. 7.13 are
determined from the definition of the minimal and maximal s.n.r. value Tiin,max,

_ Nmimmax - kag
Tmin,max = 2
\/Nmin,max + Akag

: (7.14)

where, in analogy to the definition of Npmin max (cf- egs. 7.10,7.13), Npkg and ANy, are the integral number
of background counts under the respective kernel and the associated error. From eq. 7.14 follows

_ 2
Nmin,max - kag + 5 Tmimmax

. 1.
+ Tminmax \/kag + A‘lekg + Z Trflimmax' (7'15)

52 Chapter 7. Theory

For an adaptive circular top-hat kernel of size o(7) (cf. eq. 7.11), eq. 7.13 translates into Ny, <

70(7)2 I'(F) < Nmax, and the interpretation is straightforward: at least Npyin, but no more than Ny,
counts are required to lie within the area 7 o (7)? that the smoothing occurs over. In the case of a uniform
background, the value of Nbkg in eq. 7.15 is simply given by npkem o(7)? where npg is the global background
level per pixel in the input image.

For any given pair of (Nmin, Nmax) values, a Gaussian kernel

1 =72

will yield considerably larger effective smoothing scales than a top-hat, as, in two dimensions, more than 60
per cent of the integral weight fall outside a 1o radius, whereas, in the case of a circular top-hat kernel, all
of Npin needs to be accumulated within a 1o radius. (Note that, according to Eq. 7.16, it is the weights
per unit area that follow a Gaussian distribution. The weights per radial annulus do not, which is why, for
the kernel defined in Eq. 7.16, the fraction of the integral weight that falls outside the 1 ¢ radius is much
larger than the 32 per cent found for a one-dimensional Gaussian.) Which kernel to use is up to the user:
ASMOOTH offers a choice of Gaussian and circular top-hat but any other, user-defined kernel can be specified
as an optional argument in the function call.

The algorithm is coded such that the adaptively smoothed image is accumulated in discrete steps as the
smoothing scale increases gradually, i.e.

I'xs (7 ZI’ ZI)@ K(7,04) , (7.17)

where o; starts from an initial value op which is matched to the intrinsic resolution of the raw image (i.e.,
the pixel size), and I;(7) is given by

I(7) where Nuyin < I'(F) /IC(0i) < Nmax
L(7) = and I(7) & I;(7),j <1 (7.18)
0 elsewhere.

The adaptively smoothed image is thus accumulated in a “top-down” fashion with respect to the observed
intensities as ASMOOTH starts at small kernel sizes to smooth the vicinity of the brightest pixels, and then
increases the kernel size until, eventually, only background pixels contribute. Note that condition 7.18
ensures that pixels found to contain significant signal at a scale o; will not contribute to the image layers
I]’-, (j > i) subsequently produced with smoothing scales o; > ;. Consequently, each feature is smoothed
at the smallest scale at which it reaches the required significance (see eq. 7.13), and low-s.n.r. regions are
smoothed at an appropriately large scale even in the immediate vicinity of image areas with very high s.n.r.

In order to take full advantage of the resolution of the unbinned image, the size o of the smallest kernel is
chosen such that the area enclosed by (7, o) is about one pixel. For the circular top-hat filter of eq. 7.11
this means oy = 1/4/7; for the Gaussian kernel of eq. 7.16 we have og = 1/v/97. Subsequent values of
o; (i > 0) are determined from the requirement that eq. 7.13 be true. If a near-constant s.n.r. value is aimed
at with high accuracy, i.e., if a mnax value very close to Ty, is chosen, the smoothing scale o; will grow in
very small increments, and the smoothing will proceed only slowly. In all our applications we found values of
Tmax > 1.1 X Tin to yield a good compromise between CPU time considerations and a sufficiently constant
signal-to-noise ratio of the smoothed image.

While the intrinsic resolution of the raw image (i.e. the pixel size) determines the smallest kernel size o9, the
size of the image as a whole represents an upper limit to the size of the kernel. Although the convolution can
be carried out until the numerical array representing the kernel is as large as the image itself, this process

7.5. Csmooth: Adaptive Smoothing 53

becomes very CPU time intensive as o; increases. Once the smoothing scale has exceeded that of the largest
structure in the image, the criterion of eq. 7.13 can never be met as only background pixels contribute. Since
the only features left unsmoothed at this stage are insignificant background fluctuations, the algorithm then
smoothes the remaining pixels with the largest possible kernel. Unavoidably, the signal-to-noise ratio of
these last background pixels to be smoothed does not meet the condition of eq. 7.13.

In order to allow the convolution to be performed over the whole image for any kernel size up to the size
of the image itself, boundary conditions have to be specified. Of the three main possibilities truncation
(also commonly referred to as padding), duplication, and wrapping, we found padding with zeroes to be
the only feasible option if, firstly, the total number of counts in the unsmoothed image is to be preserved
and, secondly, the creation of spurious structure at the field edges is to be avoided. (Duplication, where
the values at the edges of the data array are repeated outside the image boundaries, does not always meet
the first criterion due to problems at the corners of the image; wrapping can violate the second criterion
if the image intensities do not fall off to some uniform background value at the field edges.) We ensure
that the zero-padded regions outside the actual image do not affect the convolution result by dynamically
renormalizing the kernel to the area inside the image boundaries.

The smoothed image obtained from the above procedure strictly conserves total counts (within the limitations
set by the computational accuracy) and provides a fair representation of the original data at all positions.

54

Chapter 7. Theory

Part 1V

TCD Reference Manual

55

Chapter 8

TCD Tools: Input Parameters & Data
Products

In this chapter we give a detailed account for each task in the TCD suite. We give the parameter file, a
description of each parameter, and a discussion of the data products.

NB: The term ‘Required’ indicates that the user must provide a value for the indicated parameter before
the program will run; i.e. the default parameter file does not contain a valid value.

8.1 aconvolve

8.1.1 aconvolve: input parameter file - with default values

#
aconvolve.par file
#
#
infile = Input IMAGE file name
kernelspec = Kernel specification
outfile = Output IMAGE file name
#
auxiliary outputs
#
(writekernel = no) Output kernel
(kernelfile = ./.) Output kernel file name
(writefft = no) Write fft outputs
(fftroot = ./.) Root name for FFT files
#

57

58

processing parameters

Chapter 8. TCD Tools: Input Parameters & Data Products

#
(method = slide) Convolution method
(edges = wrap) Edge treatment
(const = 0) Constant value to use at edges with edges=constant
(pad = no) Pad data axes to next power of 2°n
(center = no) Center FFT output
#
user specific comments
#
(clobber = yes) Clobber existing output
(verbose = 0) Debug level
(kernel = default) Output format kernel
(mode = ql)

8.1.2 aconvolve: Input Parameter Description

center
Optional

Data Type: boolean

Default: no
Allowed range: yes, no

Center FFT output. This parameter is currently inoperative.

clobber

Optional

Data Type: boolean
Default: yes

Allowed range: yes, no

Clobber existing output.

const

Optional
Data Type: real
Default: 0

Constant value to use when edges=constant (see edges parameter).

edges

Optional

Data Type: string

Default: wrap

Allowed range: wrap, nearest, mirror, constant, renorm

As the kernel moves across the data, the edge of the kernel may fall off the data space. When this
happens the program needs to know how the user wants to handle the edges. Five methods for handling
the edges are implemented: For the 5 cases described below, consider the following example data space:
data = { 1, 2, 3 }.

8.1. aconvolve 59

edges = wrap
When the kernel runs off the data space, it is wrapped around the data. Thus the data goes
{...1,2,3,1,2,3,1,2,3...}

edges = nearest
When the kernel runs off the data space, extrapolate the data nearest to the edge, eg data goes
{...1,1,1,2,3,3,3,3,3...}

edges = mirror
When the kernel runs off the data space, reflect the data nearest the edge, eg data goes
{...3,2,1,1,2,3,3,2,1...}

edges = constant
When the kernel runs off the data space, use the constant supplied by the const parameter (eg
const=0), so data goes { ...0,0,1,2,3,0,0,..}

edges = renorm

When the kernel runs off the data space, use a constant = 0 at the edge; however, re-normalize
the kernel by the amount of area that remains on the data space.

Implicitly, using the FFT method of convolution implies wrapping edge treatment.

fftroot
Optional
Data Type: string
Default: ./.

root file name for FFT output files

infile
Required
Data Type: string
Default: ""

The input is an image. The input image can have any number of dimensions.

The input can have the following data types: ”short” (BITPIX=16), ”long” (BITPIX=32), "float”
(BITPIX=-32), and ”double” (BITPIX=-64).

The image can be a virtual image as defined by the datamodel. Thus one could specify a virtual image
by using the "bin” syntax like

my_file.fits[EVENTS] [bin x=1:100:1, y=1:100:1]
To specify a 2D image binned on X and Y columns in EVENTS extension of my_file.fits file.

kernel
Optional
Data Type: string
Default: default
Allowed range: fits, iraf, default

The output format is controlled by the kernel parameter. The output will either be a FITS image
(kernel=fits), an IRAF .imh/.pix file (kernel=iraf), or will default to whatever format the input
is in (kernel=default).

60 Chapter 8. TCD Tools: Input Parameters & Data Products

kernelfile
Optional
Data Type: string
Default: ./.

file name for kernel image

kernelspec
Required
Data Type: string
Default: "

The examples show the syntax of the 3 kernelspec specifications that are available. The generic
syntax of the kernelspec specification is:

<key>:<parameters>:<origin>
The required ‘key’ part of the specification (3 choices):

<key> = file
This tells the program to read the kernel from the image stored in the file <parameters>. The
format of the specified file can be a FITS image or any of the data types specified for the input
image. For example,

kernelspec="file:/tmp/foo.fits"
<key> = txt
This tells the program to parse the string <parameters> to create the kernel. For example
(example of a 2D kernel),

kernelspec="txt:((1,1,1),(1,1,1),(1,1,1)):(1,1)"
<key> = lib
This tells the program to parse the string <parameters> for two things a) which library and b)

parameters needed for that library call. The parameters needed follow the library specification in
”()"’s, for example,

kernelspec="1lib:box(2,1,3,3):(1,1)"
Currently supported libraries are:

box - an N-D array with constant value

The parameters are (D, N, D1, D2,..DD) where
D = number of dimensions
N = normalization (constant value)
D1 -DD = length of box in each dimension.

Example: box(2,1,3,3) = 3x3 box with unit (1) amplitude.
gaus - an N-D non-rotated Gaussian. ‘non-rotated’ means you can specify a size for each axis
separately, but not an angle for the major axis.

The parameters are (D, M, N, SI1, S2, SD) where
D = number of dimensions
M = number of sigma to extend in each direction
N = normalization
S1-SD = sigmas in each direction

Example: gaus(2,5,1,2,3) = an elliptical 2-D Gaussian with unit (1) amplitude that ex-
tends out to 5 sigma in each direction. The sigma along the first axis = 2, in the 2nd =
3.

8.1. aconvolve 61

tophat - a 2D non-rotated elliptical top hat function.

The parameters are (D, N, D1, D2) where
D = number of dimension (ONLY = 2)!
N = normalization (what value)
D1 D2 = radii of ellipse axes along 1st and 2nd axes.

Example: tophat(2,1,3,3) = a unit high circular top hot that has a radius = 3 pixels.

The optional ‘origin’ part of the specification for kernelspec

The origin specification allows the user to specify the origin of the kernel within the kernal array
used in the convolution. By ‘origin’ we mean the center (of a function like the tophat), or peak
value (of a function such as a Gaussian). Typically 2D kernels have the origin in the “center” of
the array. Many 1D kernels have the origin as the first element in the array.

To make the tool as generic as possible, the user is allowed to explicitly specify where the origin
is. This alleviates some common restrictions that other tools may have (i.e. length of data axes
must be an odd number).

If no origin is specified, the default is to assign the origin to the center of the array (rounded
down). Thus a (5,4) array will have its origin set at (2,2).

method
Optional
Data Type: string
Default: slide
Allowed range: slide, fft

Two convolution methods are implemented. Under some simple constraints they will provide the exact
same answers.

method=slide
Sliding cell convolution is a convolution from first principles.

method=fft
The FFT of the data and the kernel is computed. The arrays are multiplied and the inverse FFT
is taken.

a) Internally the kernel and data MUST be the same size. The program will pad either/or both
the data and/or kernel to the maximum length along either axis.

If the edges of the data are "wrapped” (see edges parameter) then the FFT and slide methods will
yield the same results.

For moderately-large to large kernels, the FFT convolution is much faster (O(N log N) as opposed to
O(N?)), however a) it requires much more memory and b) it restricts the edge treatment to "wrap”.

outfile
Required
Data Type: string
Default: ""

output image file name

The output file is an image. The output image has the same dimensions as the input image. The
output data type is always "float” (BITPIX=-32).

The output format is controlled by the kernel parameter.
Note: To completely specify the file name one should include the extension name:

myfile.fits[foo] — for fits or ./[blah] — for iraf

62

Chapter 8. TCD Tools: Input Parameters & Data Products

Not specifying the file block, (i.e. the part in []’s) may results in some odd name conventions (especially
for the iraf kernel).

Note: If the output filename is ”.” or ”path/.” (where path is some directory path), then the output
file will automatically be named by deriving a root from infile.

pad
Optional
Data Type: boolean
Default: no
Allowed range: yes, no
pad data array to length = 2V,
The user can specify that the data be padded such that the length of each data axes is promoted to the
next integer power of 2. The data are always padded on the "right” hand side, thus the array 1,2,3,4,5
would be padded to 1,2,3,4,5,0,0,0. This way of padding results in no change in the origin.
verbose
Optional
Data Type: integer
Default: 0
Allowed range: 0-5
Debugging information is provided at various steps thru the program. The verbosity of the debugging
messages is controlled by the verbose parameter.
Debug Output
0 Nothing (quite)
1 echo back parameters
2 report when entering/exiting routines
3 report size of data arrays
4 report kernel building steps
5 verbose
writefft
Optional
Data Type: boolean
Default: no
Allowed range: yes, no
output FFT of data and kernel (iff method=fft). The choice indicated by writekernel has no effect
on writefft. The coordinates of the FFT output will be improved at a later time.
writekernel
Optional
Data Type: boolean
Default: no

Allowed range: yes, no

output kernel to an image. If writefft is set to ‘yes’, then the fft of the kernel will be output to real
and imaginary files regardless of the value of writekernel.

8.2. acrosscorr

8.1.3 aconvolve: Data Products Description

image

The output file is an image. The output image has the same dimensions as the input image.

output data type is always "float” (BITPIX=-32).

The output format is controlled by the kernel parameter.

8.2 acrosscorr

8.2.1 acrosscorr: input parameter file - with default values

infilel = Input file name #1
infile2 = Input file name #2. Use none for autocorrelate
outfile = Output file name
(crop = no) Crop output to size of infilel
(pad = no) Pad data to size of infilel + infile2
(center = no) Center output
(clobber = yes) Clobber existing output file
(verbose = 0) Debug level
(kernel = default) Output format kernel
(mode = ql)

8.2.2 acrosscorr: Input Parameter Description

center
Optional
Data Type: boolean
Default: no
Allowed range: yes, no

center output

63

The

If center=yes, the zero-offset point will be in the center of the output data array, otherwise, it will be

at the 0 pixel location.

clobber
Optional
Data Type: boolean
Default: yes
Allowed range: yes, no

remove output file if it exists
crop

Optional
Data Type: boolean

64 Chapter 8. TCD Tools: Input Parameters & Data Products

Default: no
Allowed range: yes, no
crop output to size of 1st image

If crop=yes, the output is cropped to the size of infilel.

infilel
Required
Data Type: string
Default: "
input filename for 1st image
The input is a FITS image or IRAF .imh image file. The input can have the following data types:
"short” (BITPIX=16), "long” (BITPIX=32), "float” (BITPIX=-32), and ”double” (BITPIX=-64).
Complex inputs are not currently supported.
Alternatively a FITS binary table can be binned using the datamodel syntax to specify the image (see
example below).

If infile2 is "NONE”, then the autocorrelation of the infilel is computed.

infile2
Required
Data Type: string
Default: ""
input filename for 2nd image
The input is a FITS image or IRAF .imh image file. The input can have the following data types:
"short” (BITPIX=16), "long” (BITPIX=32), "float” (BITPIX=-32), and ”double” (BITPIX=-64).
Complex inputs are not currently supported.
Alternatively a FITS binary table can be binned using the datamodel syntax to specify the image (see
example below).

If infile2 is "NONE”, then the autocorrelation of the infilel is computed.

kernel
Optional
Data Type: string
Default: default
Allowed range: fits, iraf, default

output format

The output format is controlled by the kernel parameter. The output will either be a FITS image
(kernel=fits), an IRAF .imh/.pix file (kernel=iraf), or will default to whatever format the input
is in (kernel=default).

outfile
Required
Data Type: string
Default: "

output image file name
The output image is an image of type FLOAT (32bit IEEE floating point number).
The center, pad, and crop parameters determine the output size.

By default, the output image is the maximum size in each direction from both input files. Thus if
infilel is 5x2 and infile2 is 3x3, the output will be 5x3.

8.2.

pad

acrosscorr 65

The output format is controlled by the kernel parameter.

Note: To completely specify the file name one should specify something the file and extension name
like:

myfile.fits[foo] — for fits or ./[blah] — for iraf

Not specifying the filename with the block specified, ie the part in [|’s may results in some add name
conventions (especially for the iraf kernel).

Note: If the output filenames are ”.” or "path/.” (where path is some directory path), then the output
files will automatically be named by deriving a root from the infilereal and adding a "real” and
"imag” suffix.

Optional

Data Type: boolean
Default: no

Allowed range: yes, no

pad data to size of imagel+image2

If pad=yes, the data is padded to the size of infilel + infile2, so in the example above the output
would be 8x5.

Padding is done before the correlation is performed. Cropping is done after, so if both are set to ”yes”,
the final output will be cropped.

verbose

Optional

Data Type: integer
Default: 0
Allowed range: 0-5

processing verbosity

8.2.3 acrosscorr: Data Products Description

image The output image is an image of type FLOAT (32bit IEEE floating point number).

The center, pad, and crop parameters determine the output size.

By default, the output image is the maximum size in each direction from both input files. Thus if
infilel is 5x2 and infile2 is 3x3, the output will be 5x3.

If crop = yes, the output is cropped to the size of infilel.

If pad = yes, the data is padded to the size of infilel + infile2, so in the example above the output
would be 8x5.

Padding is done before the correlation is performed. Cropping is done after, so if both are set to ”yes”,
the final output will be cropped.

If center=yes, the zero-offset point will be in the center of the output data array, otherwise, it will be
at the 0 pixel location.

The output format is controlled by the kernel parameter. The output will either be a FITS image
(kernel=fits), an IRAF .imh/.pix file (kernel=iraf), or will default to whatever format the input is
in (kernel=default).

66 Chapter 8. TCD Tools: Input Parameters & Data Products

Note: To completely specify the file name one should specify something the file and extension name
like:

myfile fits[foo] — for fits or ./[blah] — for iraf

Not specifying the filename with the block specified, ie the part in [|’s may results in some add name
conventions (especially for the iraf kernel).

Note: If the output filenames are ”.” or "path/.” (where path is some directory path), then the output
files will automatically be named by deriving a root from the infilereal and adding a ”real” and ”imag”
suffix.

8.3 apowerspectrum

8.3.1 apowerspectrum: input parameter file - with default values

#
apowerspectrum tool
#
inputs
#
infilereal = Input file name for real part
infileimag = Input file name for imaginary part

#
output
#

outfile = File name for output
#
processing
#

(pad = no) Pad data array to next power of 2
(center = no) Center 0 frequency at center of array
(scale = linear) Output scale
(crop = no) Crop output at Nyquist frequency

#
user
#

(clobber = yes) Delete existing output

(verbose = 0) Debug level

(kernel = default) Output format kernel
#
mode
#

(mode = ql)

8.3. apowerspectrum 67

8.3.2 apowerspectrum: Input Parameter Description

center
Optional
Date Type: boolean
Default: no
Allowed range: yes, no

center data
The center parameter controls whether the zero frequency point is at pixel=0 or pixel=N/2.
Note: both center and crop cannot be set to ”yes”.
clobber
Optional
Date Type: boolean

Default: yes
Allowed range: yes, no

clobber output file if it exists
crop

Optional

Date Type: boolean

Default: no
Allowed range: yes, no

crop output N/2

The crop parameter controls whether the entire powerspectrum is output or just up to the Nyquist
frequency (N/2).
Note: both center and crop cannot be set to ”yes”.
infileimag
Required

Date Type: string
Default: ""

input image for imaginary part of data
The input is an image. The input image can have any number of dimensions.

The input can have the following data type: ”byte” (BITPIX=8), "short” (BITPIX=16), "long”
(BITPIX=32), "float” (BITPIX=-32), and ”"double” (BITPIX=-64).

The real and imaginary parts of the input are input separately. If there is no real or imaginary part,
then set the file name to "none” or "NONE”.

(TBR) Currently, there MUST be a real part to the data. The imaginary part can be "none”.
If pad is set to yes, the data is padded in size to the next power of 2 in all dimensions.
The image can be a virtual image as defined by the datamodel. Thus one could specify a virtual image
by using the ”bin” syntax like
my_file.fits[EVENTS] [bin x=1:100:1, y=1:100:1]

To specify a 2D image binned on X and Y columns in EVENTS extension of my_file.fits file.

68 Chapter 8. TCD Tools: Input Parameters & Data Products

infilereal
Required
Date Type: string
Default: ""

input image for real part of data
The input is an image. The input image can have any number of dimensions.

The input can have the following data type: ”byte” (BITPIX=8), "short” (BITPIX=16), "long”
(BITPIX=32), "float” (BITPIX=-32), and "double” (BITPIX=-64).

The real and imaginary parts of the input are input separately. If there is no real or imaginary part,
then set the file name to "none” or "NONE”.

(TBR) Currently, there MUST be a real part to the data. The imaginary part can be "none”.
If pad is set to yes, the data is padded in size to the next power of 2 in all dimensions.

The image can be a virtual image as defined by the datamodel. Thus one could specify a virtual image
by using the ”bin” syntax like

my_file.fits[EVENTS] [bin x=1:100:1, y=1:100:1]

To specify a 2D image binned on X and Y columns in EVENTS extension of my_file.fits file.

kernel
Optional
Date Type: string
Default: default
Allowed range: fits, iraf, default

output format kernel

The output format is controlled by the kernel parameter. The output will either be a FITS image
(kernel=fits), an IRAF .imh/.pix file (kernel=iraf), or will default to whatever format the input
is in (kernel=default).

outfile
Required
Date Type: string
Default: "

output file name

The output data file is a "float” image with the power spectrum computed.

The output format is controlled by the kernel parameter.

Note: To completely specify the file name one should specify something the file and extension name
like:

myfile.fits[foo] — for fits or ./[blah] — for iraf

Not specifying the filename with the block specified, ie the part in []’s may results in some add name
conventions (especially for the iraf kernel).

Note: If the output filenames are ”.” or "path/.” (where path is some directory path), then the output
files will automatically be named by deriving a root from the infilereal and adding a "real” and
"imag” suffix.

8.4. atransform 69

pad
Optional
Date Type: boolean
Default: no
Allowed range: yes, no

pad data to next power of 2

If pad is set to yes, the data is padded in size to the next power of 2 in all dimensions.

scale
Optional
Date Type: string
Default: linear
Allowed range: linear, log, db
scale data by
The output is scaled according to the scale parameter.
The scale parameter can take the following values.
linear linear scaling: output = |FFT(a)|"2
log log (base 10) scaling: output = log(|FFT(a)|~2)
db 10 * log() scaling: output = 10*Llog(|FFT(a)|"2)
Note: For scale=log and scale=db, IEEE NaN’s may be generated in the output files, log(0) = NaN.
verbose
Optional
Date Type: integer
Default: 0

Allowed range: 0-5
processing info verbosity

Debugging information is provided at various steps thru the program. The verbosity of the debug
messages is controlled by the verbose parameter.

8.3.3 apowerspectrum: Data Products Description

image The output data file is a "float” image with the power spectrum computed.
The output is scaled according to the scale parameter.

The output format is controlled by the kernel parameter.

8.4 atransform

8.4.1 atransform: input parameter file - with default values

70
#
atransform.par file
#
inputs
infilereal =
infileimag = none
#
outputs
#
outfilereal =
outfileimag =
#
processing parameters
#
transform = fft
direction = forward
(pad = no)
(center = no)
#
user preferences
#
(clobber = yes)
(verbose = 0)
(kernel = default)
#
mode
#
(mode = ql)

Chapter 8. TCD Tools: Input Parameters & Data Products

Input file name for real part
Input file name for imaginary part

File name for real part of output
File name for imaginary part of output

Transform type

Transform direction

Pad data array to next power of 2
Center 0 frequency at center of array

Delete existing output
Debug level
Output format kernel

8.4.2 atransform: Input Parameter Description

center
Optional

Date Type: boolean

Default: no
Allowed range: yes, no

center output so DC is in middle

The center parameter controls whether the zero frequency point is at pixel=0 or pixel=N/2.

clobber
Optional

Date Type: boolean
Default: yes

Allowed range: yes, no

clobber output file if it exists

direction
Required

8.4. atransform 71

Date Type: string
Default: forward
Allowed range: forward, reverse

direction of transform

infileimag
Required
Date Type: string
Default: none

input image for imaginary part of data

The input is a FITS image (possibly IRAF .imh file). The input image can have any number of
dimensions.

The input can have the following data type: ”byte” (BITPIX=8), "short” (BITPIX=16), "long”
(BITPIX=32), "float” (BITPIX=-32), and "double” (BITPIX=-64).

The real and imaginary parts of the input are input separately. If there is no real or imaginary part,
then set the file name to "none” or "NONE”.

(TBR) Currently, there MUST be a real part to the data. The imaginary part can be "none”.

The image can be a virtual image as defined by the datamodel. Thus one could specify a virtual image
by using the ”bin” syntax like my file.fitsfEVENTS][bin x=1:100:1, y=1:100:1] To specify a 2D image
binned on X and Y columns in EVENTS extension of my_file.fits file.

infilereal
Required
Date Type: string
Default: ""

input image for real part of data

The input is a FITS image (possibly IRAF .imh file). The input image can have any number of
dimensions.

The input can have the following data type: ”byte” (BITPIX=8), "short” (BITPIX=16), "long”
(BITPIX=32), "float” (BITPIX=-32), and "double” (BITPIX=-64).

The real and imaginary parts of the input are input separately. If there is no real or imaginary part,
then set the file name to "none” or "NONE”.

(TBR) Currently, there MUST be a real part to the data. The imaginary part can be "none”.

The image can be a virtual image as defined by the datamodel. Thus one could specify a virtual image
by using the ”bin” syntax like my file.fitsfEVENTS][bin x=1:100:1, y=1:100:1] To specify a 2D image
binned on X and Y columns in EVENTS extension of my file.fits file.

kernel
Optional
Date Type: string
Default: default
Allowed range: fits, iraf, default

output format

The output format is controlled by the kernel parameter. The output will either be a FITS image
(kernel=fits), an IRAF .imh/.pix file (kernel=iraf), or will default to whatever format the input
is in (kernel=default).

72 Chapter 8. TCD Tools: Input Parameters & Data Products
outfileimag

Required

Date Type: string

Default: ""

output file name for imaginary part of data
Two output data files are produced.

The data type is always "float” (BITPIX=-32). There is one file for the real part of the transform and
one for the imaginary part of the transform.

The center parameter controls whether the zero frequency point is at pixel=0 or pixel=N/2.

The output format is controlled by the kernel parameter.

outfilereal

pad

Required
Date Type: string
Default: "

output file name for real part of data
Two output data files are produced.

The data type is always "float” (BITPIX=-32). There is one file for the real part of the transform and
one for the imaginary part of the transform.

The center parameter controls whether the zero frequency point is at pixel=0 or pixel=N/2.

The output format is controlled by the kernel parameter.

Optional

Date Type: boolean
Default: no

Allowed range: yes, no

pad data to next power of 2

The user can specify that the data be padded such that the length of each data axes is promoted to the
next integer power of 2. The data is always padded on the ”right” hand side, thus the array 1,2,3,4,5
would be padded to 1,2,3,4,5,0,0,0.

transform

Required

Date Type: string
Default: fft
Allowed range: £ft

type of transform to perform

The available transforms are listed below:

transform=fft
Compute the discrete Fourier Transform of the data using an FFT algorithm. The FFT algorithm
was adapted from the STSDAS FFT routine: converted from FORTRAN to C and made to work
in multiple dimensions. By standard convention, in the forward direction the sign of the complex
exponential is negative and in the reverse direction the sign of the complex exponential is positive.
In the forward direction, the data is normalized by the area of the data.

8.5. csmooth 73

verbose

Optional

Date Type: integer
Default: 0

Allowed range: 0-5

processing info verbosity

Debugging information is provided at various steps thru the program. The verbosity of the debug
messages is controlled by the verbose parameter.

8.4.3 atransform: Data Products Description

Two output data files are produced.

The data type is always "float” (BITPIX=-32). There is one file for the real part of the transform and
one for the imaginary part of the transform.

The output format is controlled by the kernel parameter.

8.5 c¢smooth

8.5.1 c¢smooth: input parameter file - with default values

H OH B

H OH H

#
#
#

#

csmooth.par file
infile = input file name (raw image)
outfile = output file name (adaptively
smoothed image)
outsigfile = . output file name (image of the
significance of the signal at each location of the smoothed image)
outsclfile = . output file name (image of the
smoothing scales [kernel sizes] used at each location of the image)
processing parameters
conmeth = fft Convolution method.
conkerneltype = gauss Convolution kernel type.
Signifigance numbers

sigmin = 4 minimal significance (S/N ratio) of
the signal under the kernel

74
sigmax = 5 maximal significance (S/N ratio) of
the signal under the kernel
#
Scales
#
sclmin = INDEF initial (minimal) smoothing scale in
pixel, use INDEF for default ("1lpixel)
sclmax = INDEF maximal smoothing scale, use INEF
for default("image size)
#
User supplied scale map
#
sclmode = compute compute smoothing scales or user
user-supplied map
sclmap = input file name (image of
user-supplied map of smoothing scales)
(stepzero = 0.01) initial stepsize by which smoothing
scale increases
#
background method
#
(bkgmode = local) background treatment
(bkgmap =) input file name (image of
user-supplied background)
(bkgerr =) input file name (image of
user-supplied background error)
#
user specific comments
#
(clobber = yes) clobber existing output
(verbose = 1) verbosity of processing comments
(kernel = default) kernel of output format
(mode = ql)

8.5.2 c¢smooth: Input Parameter Description

bkgerr

Optional
Data Type: string
Default: < ¢’?

The input file name of a user-supplied background error map.

bkgmap

Optional
Data Type: string

Chapter 8. TCD Tools: Input Parameters & Data Products

8.5. c¢smooth 75
Default: ¢¢??

The name of a user supplied background map.

bkgmode
Optional
Data Type: string
Default: local
Allowed range: local, user

The parameter which selects how the background is to be computed. If set to ’local’, the data sur-
rounding the kernel will be used. If set to 'user’, then bkgmap, bkgerr must contain the names of files
containing a user supplied background map and a background error map.

clobber
Optional
Data Type: boolean
Default: yes
Allowed range: yes, no

Clobber existing output

conkerneltype
Data Type: string
Default: gauss
Allowed range: gauss, tophat

Convolution kernel type.

conmeth
Data Type: string
Default: fft
Allowed range: slide, fft

The convolution method. If the original ’Asmooth’ algorithm is desired, choose ’slide’.

infile
Required
Data Type: string
Default: "

Input IMAGE file name

kernel
Optional
Data Type: string
Default: default
Allowed range: fits, iraf, default

Output format kernel

outfile
Required
Data Type: string

Output smoothed image file name

76

Chapter 8. TCD Tools: Input Parameters & Data Products

outsclfile

Data Type: string
Default: .

Output file name of an image, where each pixel has the value of the scale used at that location.

outsigfile

Data Type: string
Default: .

Output file name of an image, where each pixel has the value of the significance (sigma) at that location.

sclmap

Optional
Data Type: string
Default: < ¢’?

If sclmode=user, then a map must be supplied by the user such that each pixel has the value of the
scale to use at that location.

sclmode

Optional
Data Type: string
Default: compute Allowed range: compute, user

sclmode controls whether csmooth computes all smoothing scales internally based on the specified
significance threshold (the default), or whether the smoothing scales are to be taken from a user-
supplied map.

If a map of predefined smoothing scales is supplied by the user (through the sclmap parameter), the
values of the parameters sigmin, sigmax, sclmin, sclmax, and stepzero are ignored, and any features
in the smoothed output image will, in general, not be significant at any uniform level.

sclmax

Data Type: real
Default: INDEF

sclmax is the maximum scale size allowed (in pixels). The default value (INDEF) will allow the scale
increase so as to obtain a significance within the range specified by sigmin, sigmax, which often
means that the largest scale approaches the size of the map.

sclmin

Required
Data Type: real
Default: INDEF

sclmin is the minimum scale size to use, in pixels. The default value (INDEF) will cause the program
to compute the minimum scale, which will often be of order one pixel (depending on the significance
level).

sigmax

Data Type: real
Default: 5

sigmax defines the upper boundary of significance of the (background corrected) signal under the kernel
used in selecting scale sizes.

8.5. c¢smooth 77

sigmin
Data Type: real
Default: 4

sigmin defines the lower boundary of significance of the (background corrected) signal under the kernel
used in selecting scale sizes.

stepzero
Data Type: real
Default: 0.01

stepzero is the initial step size for increasing the scale of the convolution kernel.

verbose
Optional
Data Type: integer
Default: 0
Allowed range: 0-5

Debug level

8.5.3 csmooth: Data Products Description

outfile The output map is the adaptively smoothed version of the data. The output file is an image of
the same dimensions as the input image. The output data type is always “float” (BITPIX=-32). The
output format is controlled by the kernel parameter.

outsigfile This is a map of the significance of the signal in each pixel of the smoothed image. The significance
is computed using Gaussian statistics and taking into account the expectation value of the background
in the kernel area. If not supplied by the user, the background expectation is computed from a local
estimate obtained from the counts in an annulus surrounding the kernel.

outsclfile An image of the smoothing scales (kernel sizes) used at each location of the smoothed image.
The smoothing scales are the smallest that allow the significance threshold to be reached. The scales
are the sizes of the smoothing kernel used at any location of the image: standard deviation in the case
of a Gaussian kernel, radius in the case of a tophat kernel.

78

BIBLIOGRAPHY

REFERENCES

R. Bracewell “The Fourier Transform and Its Applications”, 2nd Ed.; McGraw-Hill, Inc.; 1985.
Brigham, E.Oran “The Fast Fourier Transform”, 1974, Prentice-Hall, Inc

Ebeling H., White D.A., Rangarajan F.V.N. “ASMOOTH: A simple and efficient algorithm for adaptive
kernel smoothing of two-dimensional imaging data”, 2000, MNRAS, submitted.

79

