Computation of Hardness Ratios using BEHR

Revised July 10, 2008

Note:

• This description of the computation of hardness ratios using BEHR is based on the IDL routines colbehr.pro, BEHR_prior_propagate.pro, and eqt_interval.pro written by Vinay Kashyap, and has been adapted for use in Level 3 pipeline processing by Ian Evans. For correct operation, the required version of BEHR is 09 July 2008.

Inputs:

- Required inputs
 - C_s^n = Number of counts in source region of n^{th} observation in soft energy band
 - C_m^n = Number of counts in source region of n^{th} observation in medium energy band
 - C_h^n = Number of counts in source region of n^{th} observation in hard energy band
 - B_s^n = Number of counts in background region of n^{th} observation in soft energy band
 - B_m^n = Number of counts in background region of n^{th} observation in medium energy band
 - B_h^n = Number of counts in background region of n^{th} observation in hard energy band
 - S_s^n = Background scaling factor of n^{th} observation in soft energy band
 - S is defined as the fraction (area of background region / area of source region)
 - S_m^n = Background scaling factor of n^{th} observation in medium energy band
 - S_h^n = Background scaling factor of n^{th} observation in hard energy band
 - A_s^n = Effective area at location of source region of n^{th} observation in soft energy band (in units of cm² s)
 - A_m^n = Effective area at location of source region of n^{th} observation in medium energy band (in units of cm² s)
 - A_h^n = Effective area at location of source region of n^{th} observation in hard energy band (in units of cm² s)
 - L_c = Confidence level at which to report error default to 0.683 (i.e., 1σ)
- Optional inputs
 - $N_{\rm d}$ = Number of draws default to 100000
 - N_b = Number of burn-in draws default to 50000
 - N_{bin} = Maximum number of bins used to construct the histogram prior distributions default to 100
 - $P_{\rm bs}$ = Minimum bin size used to construct the histogram prior distributions default to 0.0
 - P_{box} = Boxcar filter size used to smooth the histogram prior distributions default to 3

Outputs:

- Hardness Ratios
 - H_{ms} = Medium band to soft band hardness ratio
 - H_{ms-} = Medium band to soft band hardness ratio lower confidence limit
 - H_{ms+} = Medium band to soft band hardness ratio upper confidence limit
 - H_{hm} = Hard band to medium band hardness ratio
 - H_{hm-} = Hard band to medium band hardness ratio lower confidence limit
 - H_{hm+} = Hard band to medium band hardness ratio upper confidence limit
 - H_{hs} = Hard band to soft band hardness ratio
 - H_{hs-} = Hard band to soft band hardness ratio lower confidence limit
 - H_{hs+} = Hard band to soft band hardness ratio upper confidence limit
 - F_{vs} = Variable spectrum flag

Algorithm:

- 1. Assume there are m observations of a source. For each observation, compute the net total source counts, $C_t^n = C_s^n B_s^n / S_s^n + C_m^n B_m^n / S_m^n + C_h^n B_h^n / S_h^n$. Reorder the observations according to increasing number of net total source counts, C_t^n , and designate the reordered observations 1, 2, ..., m-1, m.
- 2. Set $F_{vs} = \text{FALSE}$.
- 3. For each observation n = 1, ..., m perform steps 2–6 as follows.
- 4. Set $C_s = C_s^n$, $C_m = C_m^n$, $C_h = C_h^n$, $B_s = B_s^n$, $B_m = B_m^n$, $B_h = B_h^n$, $S_s = S_s^n$, $S_m = S_m^n$, $S_h = S_h^n$, $S_h = S_h^n$
- 5. Set default values:
 - If $N_b < \min(5000, N_d / 2)$ then set $N_b = \min(5000, N_d / 2)$, where min() is the minimum of the values included in the parentheses.
 - If $N_b \ge N_d$ then set $N_b = N_d 1$
 - If $\{[(C_s B_s / S_s) < 15.0] \parallel [(C_m B_m / S_m) < 15.0] \parallel [(C_h B_h / S_h) < 15.0]\} \&\& \{[(C_s B_s / S_s) > 100.0] \parallel [(C_m B_m / S_m) > 100.0] \parallel [(C_h B_h / S_h) > 100.0]\} \&\& \{N_d < 50000\} \text{ then set } N_d = 50000.$
- 6. Run BEHR on the soft and medium bands:
 - If n = 1, then run the BEHR executable as follows, capturing all of the lines of output written to **stdout**:
 - BEHR softsrc= $C_{\rm s}$ hardsrc= $C_{\rm m}$ softbkg= $B_{\rm s}$ hardbkg= $B_{\rm m}$ softarea= $S_{\rm s}$ hardarea= $S_{\rm m}$ softeff= $A_{\rm s}$ hardeff= $A_{\rm m}$ softidx=1 hardidx=1 softscl=0 hardscl=0 post=true level= $L_{\rm c} \times 100.0$ algo=gibbs details=true nsim= $N_{\rm d}$ nburnin= $N_{\rm b}$ HPD=true output=SM outputMC=true

- If n > 1, then run the BEHR executable as follows capturing all of the lines of output written to stdout:
 - BEHR softsrc= C_s hardsrc= C_m softbkg= B_s hardbkg= B_m softarea= S_s hardarea= S_m softeff= A_s hardeff= A_m softidx=1 hardidx=1 softscl=0 hardscl=0 post=true level= $L_c \times 100.0$ algo=gibbs details=true nsim= N_d nburnin= N_b HPD=true output=SM outputMC=true softtbl='tblprior_soft.txt' hardtbl='tblprior_med.txt'
- Read the simulated draws:
 - Open the file **SM_draws.txt** created by the BEHR executable for reading.
 - Read $N_d N_b$ rows of data containing two columns per row; set D_s equal to the array of length $(N_d N_b)$ of values extracted from the 1st column of data read from the file and set D_m equal to the array of length $(N_d N_b)$ of values extracted from the 2nd column of data read from the file.
- Search through the lines of output written to **stdout** by the BEHR executable for a line that contains any of the following substrings:
 - "WARNING: THE TABULATED PRIOR CONTRADICTS THE LIKELIHOOD OF THE DATA" (10 words on a single line, separated by single spaces, not including the double quotes), or
 - "WARNING: THE TABULATED PRIOR FOR THE 'SOFT' BAND

 CONTRADICTS THE" (10 words on a single line, separated by single spaces, not including the double quotes), or
 - "WARNING: THE TABULATED PRIOR FOR THE 'HARD' BAND CONTRADICTS THE" (10 words on a single line, separated by single spaces, not including the double quotes).
- If any of the substrings are found, then set $F_{vs} = \text{TRUE}$.
- 7. Run BEHR on the soft and hard bands:
 - If n = 1, then run the BEHR executable as follows capturing all of the lines of output written to stdout:
 - BEHR softsrc= C_s hardsrc= C_h softbkg= B_s hardbkg= B_h softarea= S_s hardarea= S_h softeff= A_s hardeff= A_h softidx=1 hardidx=1 softscl=0 hardscl=0 post=true level= $L_c \times 100.0$ algo=gibbs details=true nsim= N_d nburnin= N_b HPD=true output=SH outputMC=true
 - If n > 1, then run the BEHR executable as follows capturing all of the lines of output written to **stdout**:
 - BEHR softsrc= $C_{\rm s}$ hardsrc= $C_{\rm h}$ softbkg= $B_{\rm s}$ hardbkg= $B_{\rm h}$ softarea= $S_{\rm s}$ hardarea= $S_{\rm h}$ softeff= $A_{\rm s}$ hardeff= $A_{\rm h}$ softidx=1 hardidx=1 softscl=0 hardscl=0 post=true level= $L_{\rm c} \times 100.0$ algo=gibbs

details=true $nsim=N_d$ $nburnin=N_b$ HPD=true output=SH outputMC=true softtbl='tblprior_soft.txt' hardtbl='tblprior hard.txt'

- Read the simulated draws:
 - Open the file SH_draws.txt created by the BEHR executable for reading.
 - Read $N_d N_b$ rows of data containing two columns per row; set D_h equal to the array of length $(N_d N_b)$ of values extracted from the 2nd column of data read from the file.
 - Search through the lines of output written to **stdout** by the BEHR executable for a line that contains any of the following substrings:
 - "WARNING: THE TABULATED PRIOR CONTRADICTS THE LIKELIHOOD OF THE DATA" (10 words on a single line, separated by single spaces, not including the double quotes), or
 - "WARNING: THE TABULATED PRIOR FOR THE 'SOFT' BAND CONTRADICTS THE" (10 words on a single line, separated by single spaces, not including the double quotes), or
 - "WARNING: THE TABULATED PRIOR FOR THE 'HARD' BAND CONTRADICTS THE" (10 words on a single line, separated by single spaces, not including the double quotes).
 - If any of the substrings are found, then set $F_{vs} = \text{TRUE}$.
- 8. If $n \neq m$, then create the prior distribution histograms to be applied to the next observation:
 - For each band k = s, m, h separately, compute the histograms \mathcal{H}_k of the elements of the arrays D_k as follows:
 - Set $P_{\max,k} = \max(D_k)$, where $\max()$ is the maximum value of the elements of all of the arrays included in the parentheses. If the resulting $P_{\max,k} < 0$, then set $P_{\max,k} = 0$.
 - Set $P_{\min,k} = \min(D_k)$, where $\min()$ is the minimum value of the elements of all of the arrays included in the parentheses. If the resulting $P_{\min,k} < 0$, then set $P_{\min,k} = 0$.
 - Set $P_{\text{bin},k} = \max(P_{\text{bs}}, (P_{\text{max},k} P_{\text{min},k}) / N_{\text{bin}})$, where max() is the maximum of the values included in the parentheses.
 - If $P_{\text{bin},k} \neq 0$, then reset $N_{\text{bin},k} = \text{ceil}[(P_{\text{max},k} P_{\text{min},k}) / P_{\text{bin},k}]$, where ceil[] is the smallest integer not less than the value included in the brackets. Otherwise $(P_{\text{bin},k} = 0)$ reset $N_{\text{bin},k} = 1$.
 - Construct the histogram \mathcal{H}_s of the elements of the array D_s . Set the left edge of the first bin to $P_{\min,s}$, the bin size to $P_{\text{bin},s}$, and the number of bins to $N_{\text{bin},s}$. The right edge of the last bin should be set to $P_{\min,s} + N_{\text{bin},s} \times P_{\text{bin},s}$.
 - Construct the histograms \mathcal{H}_m and \mathcal{H}_h of the elements of the arrays D_m and D_h , respectively, using bin parameters $P_{\min,m}$, $P_{\text{bin,m}}$, $N_{\text{bin,m}}$ when computing \mathcal{H}_m , and bin parameters $P_{\min,h}$, $P_{\text{bin,h}}$, $N_{\text{bin,h}}$ when computing \mathcal{H}_h .
 - Compute the normalized, smoothed histogram $\mathcal{H}_{s,n}$ by smoothing \mathcal{H}_s with a boxcar filter of length P_{box} , and then dividing the result by the product of the sum of the smoothed histogram

- values and the bin width, $P_{\text{bin,s}}$.
- Compute the normalized, smoothed histograms $\mathcal{H}_{m,n}$ and $\mathcal{H}_{h,n}$ from \mathcal{H}_{m} and \mathcal{H}_{h} , respectively, using the same method as the previous step with the bin widths $P_{\text{bin},m}$, and $P_{\text{bin},h}$, respectively.
- Create the text file tblprior_soft.txt to be used when processing the next observation:
 - Output the (integer) value N_{bin} to the first line of the file
 - Output the following header (excluding the quotation marks) to the next line of the file: "lams Pr_lams". The two text elements are separated by a tab character.
 - Output $N_{\text{bin,s}}$ tab-delimited tuples containing (bin center value, bin value) for each bin of the smoothed histogram $\mathcal{H}_{s,n}$ to subsequent lines of the file, one tuple per line.

Example:

```
200
lams Pr_lams
11.000000 0.0042700937
11.250000 0.0074726640
11.500000 0.0074726640
11.750000 0.0021350469
12.000000 0.0042700937
```

- Create the text files tblprior_med.txt and tblprior_hard.txt to be used when processing the next observation from the smoothed histograms $\mathcal{H}_{m,n}$ and $\mathcal{H}_{h,n}$, respectively, using the same method as the previous step. The headers for the text files should be (in order) the integer value $N_{\text{bin},m}$ and "lamM Pr_lamM" for the text file tblprior_med.txt, and the integer value $N_{\text{bin},h}$ and "lamH Pr_lamH" for the text file tblprior_hard.txt.
- 9. After all of the observations have been processed through steps 1–6, compute the hardness ratios and confidence intervals:
 - Set $D_{\rm t} = (D_{\rm s} + D_{\rm m} + D_{\rm h})$
 - Create the arrays $D_{\text{ms}} = (D_{\text{m}} D_{\text{s}}) / D_{\text{t}}$,

$$D_{\rm hm} = (D_{\rm h} - D_{\rm m}) / D_{\rm t}$$
, and

 $D_{\rm hs} = (D_{\rm h} - D_{\rm s}) / D_{\rm t}$, for all array elements i for which $D_{\rm t}(i) \neq 0$.

• Compute the hardness ratios H_{ms} = mean value of D_{ms} ,

$$H_{hm}$$
 = mean value of D_{hm} , and

 H_{hs} = mean value of D_{hs} .

• Determine the confidence intervals on the hardness ratios by computing the lower and upper bound equal-tail confidence intervals (H_{ms-}, H_{ms+}) , (H_{hm-}, H_{hm+}) , and (H_{hs-}, H_{hs+}) , on the arrays D_{ms} , D_{hm} , and D_{hs} around the mean values H_{ms} , H_{hm} , and H_{hs} , respectively, with confidence level L_c (see below).

Computing equal-tail confidence intervals:

- Given an array of values D_{xy} with mean value \bar{D}_{xy} , and a confidence level L_c , proceed as follows:
 - Sort the array D_{xy} in ascending order. All subsequent references to D_{xy} refer to the sorted array.
 - Create an array C_{xy} with the same number of elements as D_{xy} , populated with values 0, 1/(N-1), 2/(N-1), ..., (N-2)/(N-1), 1, where N is the number of elements of C_{xy} .
 - Identify the two consecutive elements $[D_{xy}(i), D_{xy}(i+1)]$ of D_{xy} for which $D_{xy}(i) \le \bar{D}_{xy} < D_{xy}(i+1)$.
 - Compute the value

$$\bar{C}_{xy} = (C_{xy}(i+1) \times [\bar{D}_{xy} - D_{xy}(i)] + C_{xy}(i) \times [D_{xy}(i+1) - \bar{D}_{xy}]) / [D_{xy}(i+1) - D_{xy}(i)] .$$

- If no element $D_{xy}(i)$ satisfies the relation $D_{xy}(i) \le \bar{D}_{xy}$, then set $\bar{C}_{xy} = 0$.
- If no element $D_{xy}(i+1)$ satisfies the relation $\bar{D}_{xy} < D_{xy}(i+1)$, then set $\bar{C}_{xy} = 1$.
- Compute the lower and upper confidence levels $L_{c-} = \bar{C}_{xy} L_c \bar{C}_{xy}$ and $L_{c+} = \bar{C}_{yy} + L_c (1 \bar{C}_{yy})$.
- Identify the two consecutive elements $\left[C_{xy-}(i),C_{xy-}(i+1)\right]$ of C_{xy} for which $C_{xy-}(i) \leq L_{c-} < C_{xy-}(i+1)$.
- Compute the lower confidence value

$$D_{xy-} = (D_{xy}(i+1) \times [L_{c-} - C_{xy-}(i)] + D_{xy}(i) \times [C_{xy-}(i+1) - L_{c-}]) / [C_{xy-}(i+1) - C_{xy-}(i)] .$$

- If no elements of C_{xy} satisfy the above relation, then set the lower confidence value $D_{xy} = min(D_{xy})$.
- Identify the two consecutive elements $\ [C_{xy+}(i),C_{xy+}(i+1)]$ of $\ C_{xy}$ for which $\ C_{xy+}(i) < L_{c+} \leq C_{xy+}(i+1)$.
- · Compute the upper confidence value

$$D_{xy+} = (D_{xy}(i+1) \times [L_{c+} - C_{xy+}(i)] + D_{xy}(i) \times [C_{xy+}(i+1) - L_{c+}]) / [C_{xy+}(i+1) - C_{xy+}(i)] .$$

- If no elements of C_{xy} satisfy the above relation, then set the upper confidence value $D_{xy+} = max(D_{xy})$.
- Return the lower and upper confidence values D_{xy-} and D_{xy+} .

Sample test data and expected results:

- · Input Data 1
 - In the following, any values not specified are set to their default values

Observation #1:

	Soft Band	Medium Band	Hard Band
Source Counts	25	33	28
Background Counts	4	7	10

Observation #2:

	Soft Band	Medium Band	Hard Band
Source Counts	22	28	29
Background Counts	3	5	11

Observation #3:

	Soft Band	Medium Band	Hard Band
Source Counts	34	40	27
Background Counts	9	14	16

Expected Results 1

 H_{ms} = 0.059349000 (H_{ms-}, H_{ms+}) = (-0.020777198, 0.13805908) H_{hm} = -0.14119626 (H_{hm-}, H_{hm+}) = (-0.22746541, -0.056571940) H_{hs} = -0.081847257 (H_{hs-}, H_{hs+}) = (-0.16322040, -0.0025638488) F_{vs} = FALSE

• Input Data 2

• In the following, any values not specified are set to their default values

Observation #1:

	Soft Band	Medium Band	Hard Band
Source Counts	234	123	45
Background Counts	3674	2150	786
Background Scale Factor	22.661348	22.661411	22.661809
Effective Area	1807566.205719	2992805.257055	1983521.552635

Observation #2:

	Soft Band	Medium Band	Hard Band
Source Counts	339	221	110
Background Counts	4477	3113	1046
Background Scale Factor	14.482264	14.482376	14.482441
Effective Area	34547345.885866	64336614.013749	45080717.873112

Expected Results 2

$$H_{ms}$$
 = -0.54242507
 (H_{ms-}, H_{ms+}) = (-0.67159630, -0.40929599)
 H_{hm} = -0.068660230
 (H_{hm-}, H_{hm+}) = (-0.15790591, 0.020057840)
 H_{hs} = -0.61108530
 (H_{hs-}, H_{hs+}) = (-0.72982033, -0.48616630)
 F_{vs} = TRUE

Note:

Because the statistical distributions are computed from pseudo-random samples, the values are not expected to match exactly from run to run or across platforms.