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The goal of this document is to come up with a simpler, mordyedsscribed and programmed version
of the “Bayesian Estimation of Hardness Ratios” (BEHR) co&ce our primary concern is the Level 3
catalog, we will treat the problem somewhat less generliy in the paper by Park et al. (2007, ApJ, 652).
Specifically, we will not look at all definitions of the coldngrdness ratio), nor will we consider mutliple types
of prior probability distributions. For our purposes thgu#ements are that: a) the algorithm is valid for color
definitions of the form(A — B)/(A + B), b) is valid for O observed counts in one of the bands, c) alow
effective area variations, etc., and backgrounds to bepacated, and d) the algorithm is comprehensible to
a typical astrophysicist, but reasonably accurately myces the results of Park et al. (2007).

1 No Background

The algorithm described in this section meets all of the elgmals, with the exception of easily incorporating
a significant background. In the next section, | describeréision with background incorporated.

Bayes Theorem states th&t0|D, M) o P(D|0, M )P(M,0), i.e., the probability of the model parame-
ters @) given the datalp) and the model /), is proportional to the probability of the data given thedab
and the parameters times a prid?((\/, 0)). If we consider a Poisson process, and we take a uniforn prio
probability for the value of the expected counts (over amgiwae interval), then Bayes theorem vyields for the
intrinsic (i.e., expected) counts in a channél,:
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Although A, is the expected, real-valued counts,,s is the observed integer-valued counts in the channel.
€4 is a scaling factor that incorporates any desire to normdlie intrinsic rate to another reference (via differ-
ent effective areas, different integration times, etcne@ossible use far, is to reference backside/frontside
effective areas in bands to one another (eventhough iealigtthis factor should also include spectral shape).
Note also that the above probability is properly normaljzedl is also valid for O observed counts.

We'd now like to use this probability distribution to help asrive at a probability distribution for the

hardness ratio defined by:
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given counts observed in two channelg,,s and B,,s. We can calculate this probability distribution by
effecting a simple coordinate transformation. If we looktte A;.:-Bins plane, then lines of constaf
are radial spokesH = 1 along theA;;-axis, H = 0 at 45°, and’H = —1 along the B;,-axis), and
curves of constanl"/A?nt + B2, R, are quarter-circles. Thus we havg,; = Rcosf, By, = Rsin6,
anddA;,dBin = RdRdA. The hardness ratio is then simply defined by:
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As the observed counts in each channel are independenbRaei@sables, we treat the probability distri-
butions for the intrinsic counts independently. Thus, we waite the joint probability density fod;,,; and
Bjy as:

P(AintaBint|Aobs>Bobs) dAintdBint = F(Aint)F(Bint) RARAO . (4)
Using eq. (1) above, we can write this as:
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Marginalizing overR, and using eq. (3) to replac#, we obtain:
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John Davis pointed out to me that this equation simplifiesduether by explicitly substituting< back
into the equation, to find:
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This is very straightforward to program, and is even anedyty integrable (although numerical integration
might be more convenient). For the special case of= e = 1, it's easy to show that this peaks at
H= (Aobs - Bobs)/(Aobs + Bobs)-

The only shortcomings in the above is that it does not yeuthela background term. As is, it could be
used for the (many) cases where the background is negligpbdelominantly on-axis sources). It needs to be
generalized for cases where the background becomes sigmi{iaff-axis cases, most likely).

2 Background
When considering the background, we want to begin by aliextn (1) by setting:

€Ading — €AAint + B4 (8)

where 34 is the intrinsic background rate for channé] and A;,; remains the intrinsic, background-free
source counts for channdl. Performing a transformation of variables as above, we kiaewe:
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or, upon expanding using binomial coefficients,
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Note that the above is not actually properly normalized.oAlste that we have introduced probability func-
tions, P(84) and P(fg), for the background rates. Since these, too, will come froeasarements of a
Poisson variable, e.g., counts in some large, neighboggmmn, we choose:
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whered 4 are the actual, measured (integer) counts in the backgnagion andy;l is the scaling factor that
takes us from the measured background counts to the expleat&dround counts in the source region. In
practice, we expect, > 1, and usually hope thaty > 1. (For the latter case, we recover the formulae for
the case of no background.)



We can now integrate over the various nuisance paramgtgrsz, and as beforeR. And also as before,
we can substituté{ back into the probability equation. We then obtain:
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The above is not normalized; however, in the limityaf, vy — oo, it does reduce to the properly normalized
form of P(H) found for the case of zero background.

There are a few possible strategies for calculating thisaisdity function. For small numbers of counts
in both channelsA and B, one could try calculating each term in the above and sumiweg the(Aqps +
1) x (Bgps + 1) elements. The second strategy is to only retain small poefefgs + 1)~/ (yz + 1)7%. (I
have not yet tested the latter scheme to see how well it works.

3 Multiple Observations

After the probability function has been calculated, whetléh or without background, for an individual
observation, indexed by one can then calculate the joint probability function faeaies of observations as:

P(HJOIH‘C X HPH‘Aobsﬂ obsﬂeféxaeiBav‘i&f}/tiégvéiB) . (13)

This form is manifestly symmetric with respect to the ordethe individual observations, and it is not any
more difficult to calculate than the individual probabilftynctions.

4 Code & Figures

Attached below is really simple (but fairly dumba$s)l ang code that seems to work well for the above cases
by producing normalized probability distributions fa® values ofH. (This should be sufficient resolution on
'H to obtain 95% confidence intervals.) The case with no backgtas almost instantaneous. For the case of
background included, with a 1800 array, the code runs in about 5 seconds on my 3 year oluplaphave
faith that Davis can come up with a better version that witl 110 times faster. As proof of concept, | think this
demonstrates that we can come up with a replacement for tihRBI6de that will be far easier to maintain,
and yields comparably good results. | have attached sefiguags of sample probability distributions.

require("gsl");

public variable h_lo, h_hi;
(h_lo,h_hi) = linear_grid(-1,1, 1000);
public variable h = (h_lo+h_hi)/2.;
public variable dh = (h_hi-h_lo0);

% No background case

public define ph_nb(a, b, ea, eb)
{
vari able ph = I ngamma(a+b+2) + log(2.) - | ngamm(a+l) - | ngamma(b+1)
+ (a+l)*l og(ea) + (b+1l)*log(eb) + a*l og(1l+h)
+ b*l og(1l-h) - (a+b+2)*| og(ea+eb+(ea-eb)*h);
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Figure 1:Left: Probability distributions without background, fdr= 1, B = 2 (blue),A = 5, B = 10 (red),
andA = 24, B = 50 (black). Compare this to Fig. 8 of Park et al. (200/iddle: Probability distributions
with background. The values of and B are the same as on the left, however, for eagh= v5 = 10, and

6a = 5,0p = 10 (blue),d4 = 25, 6 = 50 (red), andd 4 = 125, ép = 250 (black). l.e., for each channel,
background makes up about half of the observed counts. Tdiegi¢he color is therefore the same as on the
left, but the distributions are wideRight: Probability distributionsvith background. The values of, B, ¢ 4,
anddp are the same as for the middle, byt = 5, and~yp = 10 for each. l.e., background makes up nearly
100% of the observed counts for chanrgland about half of the observed counts for charfeHence the
distributions are very broad and skewed towdarfls- —1.

(For all figureseq = ep = 1.)

return exp(__tnp(ph));
}

% Case wi th background

publ i c define ph_bkg(a, b, ea, eb, da, db, ga, gb)

{
variable j,k, pjk;
vari abl e psum = 0;
_for j (0,int(a),1)
{
_for k (0,int(b),1)
{
pj k = I nganma(da+j +1) +| nganma( db+k+1) - | nganma( da+1) - | ngama( db+1)
-j *l og(ga+l.)-k*l og(gb+1) +l ngamma( a+b+2-j - k)
-l ngamma(a-j +1) - | ngamma( b- k+1) - | ngamma(j +1) - | ngama( k+1)
+(a-j)*log(1+h)+(b-k)*log(1-h)
-(a+b+2-j-k) *l og(ea+eb+(ea-eb)*h);
psum += exp(__t mp(pj k) );
}
}
return psum sum psuntdh);
}



