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1. Scope 
This note provides the recipe for calculating cross-match probabilities for CSC sources, using the 
algorithm from Budavári & Szalay (2008) and Heinis, Budavári, & Szalay (2009) that was also used for the 
CSC-SDSS cross-match, which, in turn, was used for the absolute astrometric error determination for 
Release 1 by Rots & Budavári (2011). See also Budavári & Loredo (2015). I will discuss multi (i.e., more 
than two) catalog matching and provide recommendations for situations where the spatial resolutions 
are significantly different. 
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2. Context and Parameters 
Let us assume we have two sets of sources, L  and M, containing ܰ  sources from L  that are contained 
in the intersection with the coverage of M  and ܰெ sources from M  that are contained in the 
intersection with the coverage of L. 

Each source ݊ has an elliptical (95% confidence) position error associated with it, characterized by semi-
major axis ܽ (in radians), semi-minor axis ܾ (in radians), and position angle ߶. We assume that the 
error distribution is Gaussian. 

3. Pair-wise Cross-Match Procedure 

3.1.  Initialization 
First some basic spherical trigonometry. If we have two sources (ɲ1͕ɷ1Ϳ�ĂŶĚ�;ɲ2͕ɷ2), the distance between 
ƚŚĞ�ƚǁŽ͕�ʗ͕�using the polar triangle including the two positions, is: 

߰ = arccos(sinߜଵ ή sinߜଶ + cosߜଵ ή cosߜଶ ή cos(ߙଵ െ  ((ଶߙ

And, assuming that the positions are close enough that the angles at both of them are each other’s 
supplement, the complement of the smaller of the two (the position angle of the vector ʗ, counted 
counter-clockwise from the negative right ascension axis), ੮, is: 

߮ = ߨ 0.5 െ arcsinቆ
sin(ߙଵ െ (ଶߙ

sin߰
cos൫0.5(ߜଵ +  ଶ)൯ቇߜ

 

Each source ݅ from L  is matched against each source ݆ from  M. and the Bayes factor ܤ  for each of 
those matches is calculated as: 

ܤ =
2

(݆)ଶߪ + (݅)ଶߪ
 ᦶ expቌെ

߰ଶ

2 ቀߪଶ(݆) + ଶ(݅)ቁߪ
ቍ 

If ࣒పఫതതതത is the vector between sources ݅ and ݆, let ߖ be the angular distance in radians and ߶ the 
vector’s position angle. ߪ(݆) is the (Gaussian) standard deviation of the position error of source ݅ along 
the vector ࣒పఫതതതത, i.e., the distance, in radians, along that vector from the position of ݅ to where it 
intersects with its error ellipse, scaled to Gaussian standard deviation. This means: 

(݆)ଶߪ = ܵ  ᦶ 
ܽଶܾଶ

ܽଶ sin ଶ൫߶ െ ߶൯ + ܾଶ cos  ଶ൫߶ െ ߶൯
 

ܵ = ܵଽହ = 0.1669041 for conversion from 95% confidence level to standard deviation; 
ܵ = ܵଽ = 0.217146 for 90% confidence. 
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The expression is the same for ߪ(݅), after switching ݅ and ݆. Note that the expression is insensitive to 
ƚŚĞ�ƐŝŐŶ�ŽĨ�ƚŚĞ�ĂŶŐůĞ�ĚŝĨĨĞƌĞŶĐĞ�ĂŶĚ�ĂůůŽǁƐ�ŝƚƐ�ǀĂůƵĞ�ƚŽ�ďĞ�ƚĂŬĞŶ�ŵŽĚƵůŽ�ϭϴϬȗ͘ 

We start out with the prior ܲ(0): 

ܲ(0) =
min( ܰ ,ܰெ)

ܰ  ᦶ ܰெ
 

The numbers of sources in the catalogs ( ܰ, ܰெ), as well as the expected number of matches, need to 
be scaled to the whole sky. 

3.2.  Iteration 
Here the iteration starts. 

Calculate for each pair (݅, ݆) its posterior match probability ܲ: 

ܲ(݇) = ቆ1 +
1 െ ܲ(݇)
ܤ  ᦶ ܲ(݇)ቇ

ିଵ

 

Now update ܲ: 

ܲ(݇ + 1) =
σ σ ܲ(݇)ேಾ

ୀଵ
ேಽ
ୀଵ

ܰ  ᦶ ܰெ
 

Iterate until: 

ܲ(݇ + 1) െ ܲ(݇)

ܲ(݇ + 1) <  10ିଷ 

Again, the numbers of sources in the catalogs ( ܰ, ܰெ), as well as the expected number of matches, 
need to be scaled to the whole sky. It is prudent to limit the maximum number of iterations to 
something like 20: if all Bayes Factors are very small this will not converge and no harm will be done if 
the iterations are terminated. 

3.3. Probability Thresholds  
Budavári & Szalay (2008), in Section 5.3, propose a self-consistent mechanism for determining the 
threshold that match probabilities have to meet in order to be considered accepted. On that basis we 
have adopted the following considerations and criterion for acceptance 

For a given set of ݊ ݉-tuples the iteration on the probabilities for the individual ݉-tuples is derived 
from the Bayes Factors and a prior that involves the sum of probabilities and the source densities. The 
issue here is that the source densities introduce a scaling of the probabilities as derived from the BFs 
(that's why the ܲ versus log(ܨܤ) curves are never identical) and that for assigning matches we want to 
apply a uniform thresholding criterion. Here is the recipe: 
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Assume we have a list of ݊ source ݉-tuples with probability [݅] and a ܵ  =  σ [݅]
ୀଵ  . 

Note that I count array elements as 1-relative for clarity. 

1. If ܵ < 0.2 reject all matches; else: 
2. Sort the list according to decreasing [݅] 
3. Set ݇ = ܵ   (truncate) 
4. Set ܲכ  = [݇]   +  (݇ െ  ܵ)  ή [݇])   െ ݇]  + 1])  

This is a simple  linear interpolation 
5. Set the threshold for these ݊ ݉-tuples to ܲ = ή ݏ   כܲ 
6. Accept all ݉-tuples in the list with [݅]  >  ܲ 

 ,should probably still be an input parameter. I have tested this extensively on the test sets Orion, M31 ݏ
Sim-4, and Cosmos-4. The best results are obtained with ݏ = 0.90. For increased transparency we 
decided to scale all probabilities to a common threshold value, (arbitrarily) set at 0.70, by setting 

כ = .

כ resulting in tuple matches with , > ݏ ή 0.70 to be accepted as true matches. 

4. Multi-Set Matching 
Cross-matching sources between two sets is pretty straightforward, as demonstrated in Section 3. 
Extending this to more than two sets is not quite trivial.  

The first problem here is that the number of ݊-tuples increases dramatically as the number of catalogs 
increases. To alleviate that and bring the number of ݊-tuples to be considered down to a manageable 
level, Budavári & Szalay (2008) propose a filtering algorithm that is based on the distance between the 
individual elements of the tuple. What I propose is to base consideration on the pair-wise probability 
between the elements. Suppose we have ݊ catalogs 

1. Determine the match probabilities between all sources in each pair of catalogs 
2. Designate all sources as ambiguous that have more than one match probability above the 

limiting probability with each of the other catalogs, excepting matches with sources that have a 
PSF size 4.0 or more times greater 

3. For ݉ = 3 …݊ find all tuples for which at least ½(݉െ 1)(݉ െ 2) + 1 pairs have a match 
probability greater than the threshold specified in Section 3.3 and where each member is an 
unambiguous source 

4. Determine the Bayes Factors as specified in Sections 4.1 and the probabilities as in Section 3 
5. Accept tuples with probabilities  exceeding the threshold in Section 3.3 

Calculate the Bayes Factors  for ݊ > 2 by using their logarithms, to guard against overflows, following 
the expressions in one of the following two subsections. 

4.1. Bayes Factors for Elliptical Errors  
Tamás Budavári (private communication) provided the equations to be used for n-tuple matching using 
elliptical errors. 
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The covariance matrix పന  representing the error ellipse  (ܽ, ܾ,߶ = 0), as defined in Section 2, and its 

inverse, పന
ିଵ

are: 

పന = ቈ
ܽଶ 0
0 ܾଶ

       పന
ିଵ

= ቈ
ܽିଶ 0

0 ܾିଶ
 

For arbitrary ߶ the inverse covariance matrix becomes: 

పന
ିଵ

=
1

ܽଶܾଶ
ቈ
ܽଶ sinଶ ߶ + ܾଶ cosଶ ߶ ൫ܾଶ െ ܽଶ൯ sin߶ cos߶
൫ܾଶ െ ܽଶ൯ sin߶ cos߶ ܽଶ cosଶ ߶ + ܾଶ sinଶ ߶

 

For reference, the inverse of the symmetric 2 × 2 matrix ቂ
 ݎ
ݎ ቃ   is:    ଵݍ

ିమ
ቂ
ݍ െݎ
െݎ  ቃ. 

Note that the denominators in the scaling coefficients are the determinants of the matrices to be 

inverted and that  ቚపന
ିଵ
ቚ =  หനห

ିଵ
. 

We define for an n-tuple of sources the matrix ࡷന  (effectively the covariance matrix of the combined 
tuple) through its inverse, as the sum of the inverse covariance matrices: 

നିଵࡷ = పന
ିଵ



ୀଵ

 

And the vectors ࢟ഥ (the mean position of the tuple) and ࢛ഥ by: 

ഥ࢟ നିଵ ᦶࡷ =  పന
ିଵ



ୀଵ

ᦶ ࢞పഥ =  ഥ࢛ 

If the ݇ᇱ  are the elements of matrix  ࡷനିଵ, then: 

ഥ࢟ നିଵ ᦶࡷ ഥ் ᦶ࢟ =
݇ଶଶᇱ ଵଶݑ െ 2݇ଵଶᇱ ଶݑଵݑ + ݇ଵଵᇱ ଶଶݑ

݇ଵଵᇱ ݇ଶଶᇱ െ ݇ଵଶᇱ
ଶ =  ഥ࢛ ധധധ ᦶ ࡷ ഥ் ᦶ࢛

The position vectors ࢞ഥ = ቂ
ଵݔ
 ഥ. In࢟ ଶቃ are defined in the tangent plane with tangent point ideally atݔ

practice, one may choose to use, (ߙ,  :), the average values of the source positions in the tuple. Thenߜ

ଵݔ =
െ cosߜ sin(ߙ െ (ߙ

sinߜ sinߜ + cosߜ cosߜ cos(ߙ െ  (ߙ

ଶݔ =
sinߜ cosߜ െ cosߜ sinߜ cos(ߙ െ (ߙ
sinߜ sinߜ + cosߜ cosߜ cos(ߙ െ  (ߙ

Finally, the Bayes Factor for the tuple becomes: 
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ܤ = 2ିଵ
ටหࡷനห

ς ටหపന ห
ୀଵ

exp ൝
1
2
൭࢟ഥ் ᦶ ࡷനିଵ ᦶ ࢟ഥ െ࢞పഥ ்



ୀଵ

ᦶ పന
ିଵ

 ᦶ  ࢞పതതത൱ൡ  

Note that, since ࡷന  is the covariance matrix of the complete tuple, the spatial properties of the master 
source are provided by the vector ࢟ഥ, representing the resulting position, and the eigenvectors of ࡷന , 
providing the parameters of its error ellipse; see also Section 9. 

5. Spatial Resolution Troubles 
Cross-matching has a dark side to it, as Tom Loredo commented recently, and this is particularly 
apparent in situations where the spatial resolution varies widely between the catalogs to be matched – 
and this is unfortunately applicable par excellance to the Chandra data. Consider two sources separated 
by a few arcseconds observed on-axis (where they are easily resolved) and 10 or 15 arcminutes off-axis 
(where there is no chance of resolving them). In such a situation the position errors may all be fairly 
small and essentially irrelevant: the deciding factor for matches is really the size of the PSF. 

Although the use of error ellipses works well  for matching catalogs with comparable spatial resolution 
and usually yields match probabilities of order 0.99, for general purpose matching I recommend using 
the PSF standard deviation ellipses. The implementation is further discussed in Section 7. 

6. PSF Parameters 
In principle, the parameters of the ECF 90% PSF ellipses are available from the Region files. For single-
Obi stacks this does not present a problem and one can just take the values and scale the semi axes 
down by ξ0.217146 . For multi-Obi stacks one needs to calculate a composite PSF where each Obi is 
assigned a weight proportional to the number of counts it contributes to the total number detected in 
the source. If there are   photons detected in Obi ݅ of ݊ Obis: 

ݓ =  


σ 
ୀଵ

 

One can take two approaches to deriving the parameters of the composite PSF: 

6.1.  Parameter Average (current solution) 
Convert the individual Obi-based PSF ellipse parameters to coefficients of the canonical ellipse equation, 
calculate a weighted average, and convert the result back to ellipse parameters. 

If ܽ and ܾ are the semi major and minor axes of an ellipse, with the major axis aligned along the x axis, 
the canonical equation is 

ଶݔ

ܽଶ
+ 
ଶݕ

ܾଶ
= 1 

Or: 
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ᦶ ൦ (ݕ ݔ)

1
ܽଶ

0

0
1
ܾଶ
൪  ᦶ 

ݔ
൨ݕ

= ഥ࢞ ധധധ ᦶ ࡽ ഥ் ᦶ࢞   = 1 

For an ellipse rotated counter-clockwise by an angle ߶ the elements ݍ of matrix ࡽ are: 

ଵଵݍ =  
cosଶ ߶
ܽଶ

+  
sinଶ ߶
ܾଶ

 

ଶଶݍ =  
sinଶ ߶
ܽଶ

+  
cosଶ ߶
ܾଶ

 

ଵଶݍ = ଶଵݍ  =  sin߶  cos߶  ൬
1
ܽଶ

െ  
1
ܾଶ
൰ 

Calculate the individual ܽ  elements for each Obi, calculate their weighted averages, and derive the 
composite ellipse parameters through the reverse formulae: 

ܽ =  ඨ
2

ଵଵݍ)  + ଵଵݍ)ଶଶ)െඥݍ  െ ଶଶ)ଶݍ  + ଵଶଶݍ4
 

ܾ =  ඨ
2

ݍ) (ଶଶݍ + + ඥ(ݍଵଵ െ ଶଶ)ଶݍ  + ଵଶଶݍ4
 

߶ =  

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

0                                                        for ݍଵଶ = 0 and ݍଵଵ <  ଶଶݍ
1
2
ଵଶݍ for                                                   ߨ = 0 and ݍଵଵ > ଶଶݍ

1
2

arctan ൬
ଵଶݍ2

ଵଵݍ െ ଶଶݍ 
൰                 for ݍଵଶ ് 0 and ݍଵଵ < ଶଶݍ

1
2
ߨ +  

1
2

arctan ൬
ଵଶݍ2

ଵଵݍ െ ଶଶݍ 
൰     for ݍଵଶ ് 0 and ݍଵଵ > ଶଶݍ

       

Note that for ݍଵଵ =  .ଶଶ the ellipse becomes a circleݍ 

6.2.  PSF Average (preferred solution) 
Construct a composite PSF by taking the weighted average of the PSF images and determine the ECF 
90% ellipse or, alternatively, the 1-ʍ�ĞůůŝƉƐĞ�ŽĨ�ƚŚŝƐ�ĨƵŶĐƚŝŽŶ�ĚŝƌĞĐƚůǇ͘ 

7. Mixing Error Ellipses and PSFs 
As noted above, in some cases calculating probabilities on the basis of error ellipses provides better 
results, in other cases calculating them on the basis of the PSF size. Qualitatively, it is easy to see why 
this would be the case. However, translating that into quantitative criteria is one of the knottiest 
problems. To make matters worse, it cannot be a global choice for certain catalog or stack sets, either: 
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even when Chandra stacks are pointed well apart from each other, there will always be areas where the 
PSF are similar, in size and rotation. 

The decision on which ellipse to use will have to be made individually for each source pair. After some 
experimentation, two ways to approach this problem have emerged as feasible candidates, one simply 
based on which pair of ellipses provides the highest Bayes Factor, the other based on the fraction of 
overlap area between the two PSFs. 

7.1.  Value of the Bayes Factor (preferred solution) 
For each source tuple that is to be considered calculate the Bayes Factor based on the error ellipses as 
well as on the PSFs. Use the largest value and proceed. This is a very simple prescription that was 
originally rejected, but after the introduction of additional improvements it turns out to work well and 
avoids the necessity of the PSF overlap ratio parameter which presents by itself the knotty problem 
referred to above. 

7.2.  Ellipse Overlap Fraction (acceptable solution) 
The premise is that if the PSFs are very similar one should use the error ellipses; otherwise the PSF 
ellipses should be used. The criterion as to what “very similar” means quantitatively is to be based on 
the fractional area of the larger of the two PSFs in which the two overlap. Two concentric ellipses can 
have zero, two, or four points of intersection. If there are zero or two such points, the fractional overlap 
area is the ratio of the area of the smaller to that of the larger ellipse. If there are four intersection 
points the area of overlap may be approximated by that of the parallelogram formed by those four 
points. If the fraction is greater than ܲହ, one should use the error ellipses, otherwise use the PSFs. ܲହ 
is another tweaking parameter; we shall set it to 0.65 for now. This has been implemented in 
CSCxmatchMS2mix6. 

The area of an ellipse with semi axes ܽ and ܾ is ܾܽߨ. 

The points of intersection may be determined using the algorithm provided by Hughes and Chraibi 
(2012). If we have two ellipses (ܽଵ,ܾଵ,߶ଵ) and (ܽଶ,ܾଶ,߶ଶ), rotate them by െ߶ଵ, and set ߶ = ߶ଶ െ  ߶ଵ, 
we can define coefficients for canonical equations ݔଶ + ଶݕݍ + ݕݔݎ = 1: 

ଵ =  
1
ܽଵଶ

ଵݍ       , =  
1
ܾଵଶ

ଵݎ        , = 0 

ଶ =  
cosଶ ߶
ܽଶଶ

+
sinଶ ߶
ܾଶଶ

, ଶݍ =  
sinଶ ߶
ܽଶଶ

+
cosଶ ߶
ܾଶଶ

ଶݎ       , = 2 sin߶ cos߶ቆ
1
ܽଶଶ

െ
1
ܾଶଶ
ቇ  

Then we derive the coefficients of the quadratic equation for the squares of the y-coordinates of the 
intersections: 

ସݕ + ଶݕݍ + ݎ = 0 

 = െଵݍଵݎଶଶ െ ଶݍଵ) െ  ଶ)ଶଵݍ

ݍ = ଵ)2 െ ଶݍଵ)(ଶ െ (ଶଵݍ + ܽଵݎଶଶ 
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ݎ = െ(ଵ െ  ଶ)ଶ

The determinant: 

ܦ = ଶݍ െ ݎ4 ቐ
< 0:   no intersecting pointsെ smaller contained in larger                      
= 0:   two intersecting (tangent)points െ smaller contained in larger
> 0:   four intersecting points െ proper intersection                                

 

The coordinates of the four points of intersection are then easily derived: 

ଶݕ =
െݍ ± ξܦ

2
 

ଶݔ = ܽଵଶ ቆ1െ
ଶݕ

ܾଵଶ
ቇ 

The area ܣ of the overlap parallelogram is most easily calculated as half the sum of the outer products 
of the neighboring vertex vectors, taking care that they are followed counter-clockwise: 

ܣ = 0.5൫(ݔଵݕଶ + ଷݕଶݔ + ସݕଷݔ + ଵ)െݕସݔ ଵݕଶݔ) + ଶݕଷݔ + ଷݕସݔ +  ସ)൯ݕଵݔ

A better solution is to calculate the ellipse sectors exactly. The area of an ellipse sector between angles 
 :ଵ, counted counter-clockwise from the major axis, is (David Eberly, Geometric Tools, LLC)ߠ   andߠ

(ଵߠ,ߠ)ܣ = (ଵߠ)ܨ െ  (ߠ)ܨ 

Where: 

(ߠ)ܨ =  
ܾܽ
2

 ᦶ ቊߠ െ arctanቆ
(ܾ െ ܽ) sin ߠ2

(ܾ + ܽ) + (ܾ െ ܽ) cos ቇቋߠ2
 

8. Very Large Numbers of Catalogs 
Section 4 provided the logic for matching any number of catalogs. However, beyond 10-15 catalogs the 
number of combinations to be considered becomes impractically large and we need to apply additional 
measures to keep the problem manageable.  

8.1.  Connected Components and Exclusion of Ambiguous Sources 
Dan Nguyen proposed to use the Connected Components algorithm as implemented in the Boost 
Graphic Library to identify the candidate source tuples that need to be taken into consideration, based 
on the pair-wise match probabilities, without having to inspect all possible tuples. This is extremely 
effective, but it requires the prior exclusion of pair-wise matches with sources that have ambiguous 
matches. These are identified by inspecting all source pairs that satisfy the match probability threshold 
and excluding sources that have more than one qualified match with any source in any single other 
catalog. A qualified match is defined as a match exceeding the probability threshold where the ratio of 
the areas of the PSF ellipses of the source under consideration and the matched source is less than ଶܲହ. 
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I.e., this is an asymmetric criterion where matches with sources that have much larger PSFs (and hence 
are more prone to an ambiguous match) are excluded for the source with the smaller PSF. ଶܲହ = 0.25 
has been found to be a good value to adopt. 

8.2.  Recursive Matching 
A second option is to adopt a hierarchical scheme of recursive matching: 

x Group the stacks in into manageable sub-ensembles;  this grouping may be done intelligently 
(i.e., not at random) 

x Run these through the pipeline 
x Determine the Master Source properties (see below) for the established Master Sources, using 

only unambiguously matched sources, and put them into pseudo stacks 
x Run the pipeline again on these pseudo stacks 

This method is consistent with the recommendations made by Budavári & Szalay (2008). 

9. Spatial Master Source Properties 
The spatial Master Source properties are determined on the basis of the following two equations note 
that this is similar to the matter of determining elliptical errors; see Section 4.1 for details): 

നିଵࡷ = పന
ିଵ



ୀଵ

 

ഥ࢟ നିଵ ᦶࡷ =  పന
ିଵ



ୀଵ

ᦶ ࢞పഥ  

Their positions are determined by evaluating the vector ࢟ഥ , while error ellipses are determined by their 
inverse covariance matrices ࡷനିଵ, calculated as the sum of the inverse covariance matrices of the 
contributing unambiguous matches. Of course, the (tangent plane) vector ࢟ഥ needs to be transformed to 
,ߙ) ,ߙ) the plane’s tangent point is ;(ߜ  ). The Master Source PSFs are determined by their inverseߜ
covariance matrices ࡷനିଵ, calculated as the sum of the inverse covariance matrices of the contributing 
unambiguous matches weighted by the inverse area of their error ellipses (i.e., the inverse of the 
product of the error ellipse semi-axes for the source they refer to); the weights are to be scaled so their 
sum is unity. 
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