
A Statistic for a Crater Detection Algorithm
Version 0.1-0

John E. Davis
<davis@space.mit.edu>

May 15, 2008

1 Overview

The purpose of this document is to present a statistic that may be used as the basis
for an algorithm to detect the so-called pile-up craters created by photon pile-up
from a bright X-ray source. The standard level-3 source detection pipeline misses
such sources and instead incorrectly identifies sources around the rim of the crater.
Knowing the locations and sizes of the craters will allow such false detections to
be excluded.

Craters come in various sizes and shapes. A example of a standard looking crater
is shown in figure 1a. Because of serial CTI, some craters lookmore like canyons
as the example in 1b illustrates. If the cratering source experiences flares, some-
thing more akin to a “moat” can result; such an example is showin figure 1c.

In the next section, a simple mathematical characterization of craters based upon
moments is presented. From these considerations, a statistic that may be used for
crater-detection is proposed. Some constraint equations used to filter out candi-
date regions and limit the number of false detections are given in section 3. Fol-
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(a) Standard
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(b) Canyon
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(c) Moat

Figure 1:Figure showing images of the three types of craters described in the text.
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lowing a brief summary is an appendix where a crude estimate of the minimum
count rate for a crater is given, as well some software implementation notes.

2 General Considerations

Suppose that an image is made by binning the events using somepixel grid ex-
pressed in aspect-corrected sky coordinates. Then consider a regionΩ of radius
R that contains a standard crater at its center. Such a region is expected to have
only a few countsM0 at its center with most counts uniformly azimuthally dis-
tributed outside some core of radiusr. Let M denote the total number of counts
contained in the region, and letM0 be the number contained in the core. Simi-
larly, let M1 = M − M0 be the number outside the core. Now erect a Cartesian
coordinate system with the origin at the center of the region. Then each image
pixel will have some coordinate(x, y) and containmxy counts so that

M =
∑

xy∈Ω

mxy. (1)

Now consider the following moments of the count distribution in the region:

Ix =
∑

xy∈Ω

mxyx (2)

Iy =
∑

xy∈Ω

mxyy (3)

Ixy =
∑

xy∈Ω

mxyxy (4)

I ′
xy =

∑

xy∈Ω

mxy|x||y| (5)

Ixx =
∑

xy∈Ω

mxyx
2 (6)

Iyy =
∑

xy∈Ω

mxyy
2 (7)

For an approximately azimuthally symmetric crater, it is expected that

Ix ≈ Iy ≈ 0 (8)
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and
Ixy ≈ 0. (9)

On the other hand, since the crater is expected to have few counts near the origin,
Ixx ≈ Iyy should be relatively large compared to the moments for a region that
contains an equal number of counts uniformly spread overΩ.

If I is defined to beIxx + Iyy, then the radius of the crater may be characterized
as

r =
√

I/M. (10)

Furthermore, for an azimuthally symmetric distribution,I can be related toI ′
xy as

follows. In the continuum limit,I may be written as

I = 2π

∫ R

0

drρ(r)r3, (11)

whereρ(r) represents the count-density at the radial coordinater. Similarly,

I ′
xy =

∫ R

0

rdr

∫ 2π

0

dθρ(r)|r cos θ||r sin θ|. (12)

The integral overθ may be easily carried out to yield the relation

I = πI ′
xy. (13)

With the above observations in mind, consider the quantityT defined by

T =
2I2 − k1(I

2
1/M + |Ixy|) − k2|I − πI ′

xy| − k3I3

NR2M0/M1

, (14)

where

I1 = max(|Ix|, |Iy|), (15)

I2 = min(Ixx, Iyy), (16)

I3 = (1 + m00)πR4/2. (17)

Herek1, k2, andk3 are positive constants, andN is the number of CCD frames
that contributed to the image, which serves to normalizeT .
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For an azimuthally symmetric crater, the first term in the numerator of equation
(14) will be much larger than the remaining terms; hence thisquantity is expected
to be a large positive value. For the reasons outlined above,the terms involving
k1 andk2 vanish for a perfectly symmetric distribution; hence they are expected
to be quite small for a cratered source.

The last term, which involves the number of countsm00 in the central pixel, will
be small for a cratered source where most of the counts are distributed away from
the center. However, for a non-cratered sourcem00 will be quite large making
this term very negative and most likely the most dominant term in the numerator.
Hence for a non-cratered point source at the center of the region, T will most
likely be negative.

Now consider the effect of the last term for a regionΩ that contains mainly back-
ground events. In this case, the value ofm00 will be representative of all the other
values ofmxy in the region. Since there areπR2 pixels in the region,m00πR2 will
be a value that is approximately equal the observed number ofcountsM in the
region. In this scenario the value of the last term will be something likeMR2/2.
For this reason, theI3 may be regarded as the background contribution toI and
as such,

r =
√

(I − I3)/M (18)

can be taken as the definition of the radius of the crater instead of equation (10).

The above considerations imply that the numerator of equation (14) will be rela-
tively large and positive when the region contains a crater at its center, and will be
relatively small or negative otherwise. The denominator, which is proportional to
the ratio of the number of counts in the core to that outside the core, will tend to
further increase the magnitude ofT when the region contains a crater.

For the above reasons,T may be regarded as a statistic that may be used to test
for the presence of a crater at center of a region. IfT is large and positive, then
the region is likely to contain a crater at its center. IfT is small or negative, then
the region is unlikely to contain a crater.
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3 Region Mask

There are some problems with the simple statisticT given by equation (14) of the
previous section. One problem arises for bright backgroundregions that contain
many counts, such as regions in the scattering wings or halo of a bright source.
Here statistical fluctuations in the count distribution could result in cases where
T is quite large. This section describes amask that may be used to filter out such
regions.

For a large enough region centered upon a crater, the region should contain a
minimum number of counts. Call this numberMmin. Then the first part of the
mask may be expressed in the form

M ≥ Mmin. (19)

An estimate ofMmin is given in the appendix.

The second part of the mask constrains the center of the crater to be at the center
of the region. From equations 2 and 3, the distance from the center of the region
to the center of the crater can be taken to be

√

I2
x + I2

y/M . Hence the constraint
that the center of the crater should be less than one pixel from the region center
can be written as the mask

√

I2
x + I2

y ≤ k4M. (20)

It is easy to imagine that the above two constraints can be satisfied by a uniformly
distributed count distribution provided thatM is large enough. What is needed is
a constraint that masks out uniformly distributed regions.Such a constraint can
be formulated in mathematical terms as follows.

Suppose that the regionΩ is partitioned into two subregions with areasA1 andA2,
and with mean counts per pixelm̄1 andm̄2, respectively. The mean count density
of the combined region is given by

m̄ =
A1m̄1 + A2m̄2

A
, (21)
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whereA = A1+A2. The variance Var[m] in the mean count density for combined
region is defined to be

Var[m] =
1

A

∑

ij∈A1

(mij − m̄)2 +
1

A

∑

ij∈A2

(mij − m̄)2, (22)

which can be written in terms of the individual subregion variances as

Var[m] =
A1

A
Var[m1] +

A2

A
Var[m2] +

A1A2

A2
(m̄1 − m̄2)

2. (23)

If the counts in the subregions are Poisson distributed, then Var[m1] ≈ m̄1 and
Var[m2] ≈ m̄2, with the result

Var[m] ≈ m̄ +
A1A2

A2
(m̄2 − m̄1)

2. (24)

If both the subregions have the same underlying Poisson distribution, then the
term involving the difference in the observed means|m̄2 − m̄1| can be neglected
leaving Var[m] ≈ m̄. In other words, a region consisting of a uniform distribution
of Poisson-distributed counts will have a variance of the average count density.
However, if the region is not uniformly distributed, then the last term, which scales
as the square of the differencēm2 − m̄1, can be much larger than̄m. Hence, a
mask that picks out non-uniformly distributed regions can be written as

Var[m] > m̄ + k5m̄
2, (25)

wherek5 is a small non-zero constant.

4 Summary

In this work, a static for use in a pile-up crater detection algorithm was proposed
in the form of equation (14). To cut down on the number of falsedetections,
the statistic should only be applied to regions of the image that satisfy the set of
constraints given in equations 19, 20, and 25. These equations depend upon a
number of fixed parameters, whose suggested values are givenin the following
table:
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k1 4
k2 1
k3 0.5
k4 1.5
k5 0.25

Mmin 0.35
R 9
r 2.5

These values were empirically determined via trial and error, and as such are most
likely subject to change in a future update.

A An estimate of Mmin

A crater will start to form when the observed count rate outside the core of the
PSF becomes comparable with the count rate in the core. Further increases in the
source flux will increase the count rate outside the core and decrease the rate in
the core. Letf denote the average number of charge-clouds per frame in the CCD
from a point source, and letx be the fraction that is contained in the core. Then
the per frame count-rateM0 in the core may be estimated by

M0 =
∑

k≥1

αk−1 (xf)k

k!
e−xf (26)

= e−xf 1

α

∑

k≥1

(αxf)k

k!
(27)

= e−xf 1

α
(eαxf − 1) (28)

whereα is the probability that two overlapping charge clouds will give rise to an
event. Assume that there aren independent detection cells outside the core. Then
it is straightforward to show that the expected per-frame count rate outside the
core is given by

M1 = ne−(1−x)f/n 1

α
(eα(1−x)f/n − 1). (29)
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Figure 2:Figure showing a plot of the ratio of the number of counts per frame outside
the core to those in the core vs the total number of counts per frame for various values of
x andα. The solid curves correspond toα = 0 and the dashed curves are forα = 0.5.
The red, green, and blue curves correspond to values ofx equal to 0.85, 0.9, and 0.95,
respectively.

Cratering will occur whenM1/M0 > 1. Figure 2 shows a plot ofM1/M0 vs
M = M0 +M1 for various values ofα andx for n = 3. The figure shows that the
smallest value ofM occurs forα = 0, andf = 0.95, whereM is a bit less than
0.3. Since this value ofα is a bit unrealistic, a value ofMmin = 0.35 was felt to
be a reasonable compromise.

B Implementation Notes

A naive computation ofT as given by equation (14) is rather straight-forward. For
example, here is pseudo-code that computes the momentIy that contributes toT
for the region centered ati0, j0:

iR = (int)(R+0.5); / * round to nearest integer * /
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Iy = 0;
for (i = i0-iR; i <= i0+iR; i++)

{
if ((i < 0) || (i >= nx)) continue;
for (j = j0-iR; j <= j0+iR; j++)

{
if ((j < 0) || (j >= ny)) continue;
if ((j-j0)ˆ2 + (i-i0)ˆ2 > Rˆ2) continue;
I_y += (j-j0) * m[i,j];

}
}

However for values ofR greater than about 3, it is much better to cast the compu-
tation in terms of correlation integrals and make use of FFTscompute the correla-
tions. See theS-Lang reference implementation for an example of this approach.
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