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1 Introduction

The purpose of this document is to present a formalism fdissitally averag-
ing source positions and their uncertainties for use in ¢relt3 pipeline. More
specifically, the problem addressed here is to find an imgr@stimate for the
position of a source from previous independent estimatés pbsition. The un-
certainties of the estimates are expressed in the form of eflipses centered
upon the estimated positions.

This document is organized as follows: In sectifh the much simpler one-
dimensional problem of optimal weighting is addressed.tiBe¢3 extends the
approach o2 to the multivariate case section. Then in sectjdrihe results of
section;3 are applied to the two-dimensional case involving the gegamparam-
eters of the error ellipses after projection to a commoneanglane. The tangent
plane projections themselves are discussed in se§&orA brief summary that
provides a sort of road map to the key equations necessattydamplementation
of the methodology follows i§6. Finally there is an appendix that contains the
code-listing for &S-Lang implementation as well as an example of its use.



2 Optimal Weighting

Before tackling the more generatdimensional case, it is useful to consider the
simpler 1-d case. Suppose thatrepresents theth estimate of the mean of
some quantity, e.g., a temperature, andofebe the variance of theth mean.
Given a set of such estimates of the mean, and the corresponding set of vari-
ancesr2, what is the best way to combine these to obtain an improvédat of

the mean and the variance of that estimate? The approaaitiake is to use an
optimal weighting scheme that minimizes the resultingarace. Letr denote the
improved estimate and lat, be the set of weights. Then an unbiased estimate of

1S

r=— Walq, (1)

where

w = Zwa (2)

That s,
H = <‘T>7 (3)

where (-) denotes the expectation value, and the individual estsnatere as-
sumed to be unbiased.

From equation (1) it is easy to show that

Var(z] = > (%)QVar[:ia]. (4)

a

The conditions forr? to be a minimum may be obtained by differentiating the
above equation with respecttg. This procedure yields

wyVar|z,) = % > wiVar(z,). (5)

Since the right-hand-side of the above equation is indegrenaf b, it follows
thatw, is proportional tol /Var|z,|. Substituting these weights into equation (1)

produces B
T = [ZVar[xa]l} > Varlz,] 'z, (6)
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which, by construction, is the linear combinationmgfwith the smallest variance.
Substituting the weights into equation (4) yields the vac&inz:

Var[z] = {%:Var[a‘ca]‘l} 71, (7)

allowing equation (6) to be written as

7 = Var[z] Y Var(z,] ' z,. (8)

3 TheMultivariate Case

In this section, the previous technique is extended to tHévartiate case. Lek,
represent theth estimate of the mean of some N-dimensional quanptignd let
o, denote theV by N covariance matrix associated with this estimate. That is,

Oaij = <(Xa,i - :ui)(Xa,j - ,uj)>7 (9)
wherep; = (X, ;). From the above equation it is straight-forward to show that
(Xa,iXaj) = Oaij + [hilt;. (10)

An improved estimat& for ;» may be obtained by a weighted sum of the individ-
ual estimates(,, i.e.,

X =) W.X,. (11)

Here,IW, are a set ofV by N matrices whose matrix elements are to be obtained.
In order thatu = (X), it is necessary for the matrix elements to satisfy the con-
straint

5ij - Z Wa,ij- (12)
It is easy to show that the covariance matriis given by

oij = ((Xi — i) (X5 — p13)),
= (WaouW,T),.. (13)
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Now let R be a rotation matrix that transforms the vecorto X’ = RX. Then
it is easy to show that transforms as

o =RoR " (14)

It is well known that the above (similarity) transformatioray be used to diago-
nalizeo by choosingR appropriately. In the basis wheréis diagonal the product

of the diagonal elements, may be used as a measure total variance as this prod-
uct is related to the volume of the ellipsoid associated Wighcovariance matrix.

In the diagonal basis, the produd}, o}; also corresponds to the determinant of
o', denoted here adet(c’). Since the determinant is invariant under similarity
transformations, it follows thatet(o’) = det(o).

In other wordsget (o) corresponds to the volume of the covariance ellipsoid and
is taken as a scalar measure of the “total error”. Hence, #ights1V, ;; will
be chosen to minimize the determinant of the covarianceixnatsubject to the
normalization conditions of equation (12). The constiare most easily handled
through the use of Lagrange multipliexs, where the function to be minimized
may be written as

det(a) + )\ij (51] — Z Waﬂ'j). (15)

Here and in the the following, the Einstein summation cotieens used where
unless otherwise specified, repeated indicgs . . are to be summed over.

The minimization conditions follows in the usual way and nbaywritten as

Odet(o)
0 OW,.ij Ai (16)
and
O == 52']' - E Haﬂ'j- (17)

The derivatives involvindgV, ;; may be carried out using the chain rule
ddet(o) Oddet(o) Ooum

. 18
8Wa,ij @U[m 8Wa,ij ( )
It is left as an exercise for the reader to show that
O0m
aVVl - = ilaa,jkWa,mk + Wa,lkamkj(smi, (19)
a,1)
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By expandinglet(o) in terms of its cofactors, one can show (see any advanced
linear algebra text) that
ddet(o)
0alm
Together with the last two results and equation (18), theémgation condition
given by equation (16) may be written in the form

= det(o)a;, ). (20)

Aij = 2det(0) (07 W,0,). ..

]
Since the left-hand-side of this equation is independent, af follows that W,
must be of the formdo, !, whereA is some matrix that is independentaofThe
normalization condition of equation (12) may be used tomeitee A yielding

W, = [Z o '] _lagl. (22)
b

(21)

Substituting this result into equation (13) and exploitthg symmetry ot pro-

duces
o= [Zagl}_l. (23)
Finally equation (11) may be written

X = aZanga, (24)

which is the main result of this section. Note the formal meskance of this
equation to the univariate case in equation (8).

4 Computing Covariance Matrices

As seen in sectiof§3, covariance matrices play a fundamental role in combining
error ellipses. This section deals with the computatiorhefdovariance matrices
from the parameters that characterize the elliptical gegmitis assumed that the
ellipses have been projected to a common tangent plane saslui in section
§5.

The geometry of each error ellipse is specified by five pararagodf which three
are directly related to the covariance matrix. These ararigéed that that major
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axis of the ellipse makes with respect to the tangent piaagis, and the the
semi-major and semi-minor axis lengths. The lengths of ¢éngi-gnajor and semi-
minor axes correspond to the 1-sigma confidence intervatgydhese axes. More
specifically, in a basis whose origin is at the center of thpssd, and whoseg axis
is along the ellipse’s major axis, the correlation matrix is

12
0
o = ( 001 -~ ) . (25)

Here,o! is the 1-sigma confidence value along the minor axis of thpse and
o4 IS that along the major axig{ > 7). The form of the covariance matrixin
the unrotated system follows from equation (14) using

R — ( cosf) —sinf ) (26)

sinf cosf

to yield
> 0" cos? 0+ o'3sin?60 (0’5 — 0'7) cos O sin b 27)
(03— 0'})cosfsin® o'Fsin6 + o'5cos?f )
It is left as an exercise for the reader to show that the imverkations are
1 2
6= tan' (——2 ), (28)
2 022 — 011
0’2:1—0 +o —\/(a —0 )2—1—402— (29)
1 2 11 22 22 11 12| »
and n )
0'/325 O'11+O'22+\/(O’22—O'11)2+40'%2 . (30)

5 Tangent Plane Projections

In order to combine the confidence ellipses via equation, (& first necessary
to project them to a common tangent plane. This proceduressribed in this
section.



The ath estimate of the source position is specified as a confidellipse cen-
tered upon the celestial coordinate,, 4, ), with the major-axis making and angle
0, (—m < 6 < m) with respect to the local line of declination at the centethe
ellipse. The arc-length of the semi-minor axis is given tB/\hluep™"" and that
of the semi-major axis is given y"".,

The celestial coordinatéy,, §,) corresponds to a unit-vectgy, on the celestial
sphere with coordinates given by

Pa = T COS (Y COS O, + ¥ SN (v COS O + 2 Sin 0. (31)

Conversely, a unit vectgi, corresponds to the celestial coordinate

<

(Qtas 00) = (tan™t 82" w% sin~" (Pa - 2)), (32)

which is the inverse of equation (31).

An orthonormal coordinate system is defined at the pointesgted by, con-
sists of the three unit vectofs, &,, andd, where

A

Qg = —Tsin o, + Y cos ay, (33)

and )
0y = —I sind, cos a, — §sin d, sin o, + 2 cos . (34)

Note that), points along the direction of increasing declination atghsitionp,,
whereasy, points in the direction of increasing right-ascension. $ami-major
axis of the confidence ellipse associated with this positiakes an anglé, with
respect td),. The sign ofd, is in accordance with the right hand rule withp, as
the rotation axis. Fof, = 0, the “positive” end of the semi-minor axis will have
coordinateg o, + ¢™"" §,) and correspond to a unit vectgf"*", whereas the
“positive” end of the semi-major axis will lie dtv,, 6, + ¢™¥°") and correspond
to the unit vectop™°', Ford, = 0, these unit vectors are given by an equation of
the same form as equation (31). The vectors that corresmondrt-zero values
of §, may be obtained by rotating tllg = 0 values about the-p, axis by the
angled,. This operation is most easily carried out in the local cowte basis
(G, 0a, Pa) Producing

Pt = p, cos P+ Gy, sin 9" cos @ — O, sin gh" sin 6 (35)
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and
P =, cos OV - G, sin ¢V sin O + b, sin ¢ cos . (36)

These two equations along with with equations (31), (339, @d) are sufficient
to compute the unit vectors associated with the major an@mnaires of the error
ellipses. The inverse relations are easily obtained byntatie appropriate dot-
products, producing

~major A ~minor | 5a
0= tan_l (Z%Tg) = —tan_l <W)7 (37)
DPa * Oq Pa * Qg
¢(rlnajor — COS—I(ﬁ;najor . ﬁa), (38)
and
¢;ninor — COSfl( Agﬂnor X ﬁa)' (39)

Let py denote the the position on the celestial sphere where artaptgne is to
be erected. To minimize any distortion effects created wiapping from the
celestial sphere onto the tangent plgiewill be taken as the arithmetic mean of
the ellipse centerg,, i.e., >

R o« Da

oISl “o
A coordinate system may be given to the tangent plane witlotigén atp, and
orthonormal basis vecto#s, andé, parallel to the local lines of right ascension
and declination af, i.e.,

€, = Gy = —Isinag+ 1y cosayg (41)

ey, = 09 = —sindycosay — ¥sindysin o + 2 cos dp. 42)
Here,(ay, do) are the celestial coordinates that correspong to
The tangent plane projection pfis defined by
Pt = po + wé, +yé, (43)

where(z, y) denote the tangent plane coordinates associatedpwilthis a trivial
matter to show that = 1/(p - py),



and
y=(P-Do)(D &) (45)
It also follows from equation (43) that a poifit, y) in the tangent plane corre-
sponds to the unit vector
Do + zé, + yé,

b= -
V142?24 y?

Note that the mapping from to (z,y) is non-linear. The source of the non-
linearity is the factor - py, which represents the cosine of the angle betwgen
andp,. Since this angle is expected to be small, exgl0 arc-minutes, the effects
of this term may be ignored:¢s 10’ ~ 1 — 4 x 10~8). Now consider two vectors
p1 andp, with an angle¢ between them such that - p, = cos &, and let their
tangent plane coordinates ba, y;) and(z,, y2), respectively. Then in the small
angle regime wherg - p, may be taken to be 1,

(46)

P1— P2 = (11 — 22)é1 + (y1 — y2)é2 (47)

and

P — pol = V(21 — 22)% + (Y1 — 12)>. (48)
If the angle betweep; andp, is &, then

|p1 — p2| = /2(1 — cos§)
5 (49)
=+ 0(&7),

which shows that in the small angle regime, the arc-lengtivéen two celestial
coordinates is equal to the distance between the tangerd ptajections of those
coordinates. This means that the arc-lengths of the senurraad minor axes
of the error ellipses will be preserved to sufficient accyray the tangent plane
projection.

Armed with these relations, it is easy to compute the tangkamte projections of
the error ellipses. The tangent plane coordinate y,) of the center of theith
ellipse follows from equations (44) and (45), i.e.,

Tq = (ﬁa : pO)(ﬁa ' é$> (50)

and
Ya = (ﬁa : ﬁo)(ﬁa ’ éy)v (51)
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wherep, is given by equation (31). Similar equations give the tahgeane
coordinates that correspond to the end-point positijglffé" and p™°" of the
semi-major and semi-minor axes of the ellipse. Denotingeheoordinates as
(gmajor ymajor) gng (gMminor 4minen) “the lengths of the semi-major and semi-minor

a

axes in the tangent plane are given by

major

0—; = (xd - xa)Q + (yd - ya)Q (52)

and

7 = V@ = P+ G — P 53)

respectively. Here, the symbols representing these lergibe been chosen to be
consistent with equation (25). As noted above, the lengthissosemi-major and
minor-axes in the tangent plane should differ by a neglegdshount from those
of the celestial system, assuming the small angle apprdiamaln contrast, the
angle that the semi-major axis makes with respect to the limeaof declination
will differ between the two systems, particularly when tligee is located near
the poles of the celestial sphere. The angle as seen in therteplane is

major __
-1 xa Lq
6; = tan (W) . (54)
Ya —Ya

From equations (52), (53), and (54), it is easy to show thatrilierse relations
are
(MAOr g MaloN — (1, + oy sin b, y, + o7 cos ), (55)

and
( minor , minor

Moty — (x, + o] cos b, y, — oysind,), (56)

and from these the corresponding unit vectors may be olatéimeugh the use of
equation (46).

6 Summary

Equations (50), (51), (52), (53), and (54) constitute a $etquations that may
be used to map error ellipses from the celestial system ostmranon tangent
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plane, whose location is given by equation (40). Once ptegeto the tangent
plane, covariance matrices may be computed using equ&i)ngermitting the

error ellipses to combined via equation (24). This procesdyces the geometric
parameters of a combined error ellipse on the tangent plEmemapping of the

error ellipse from the tangent plane back to the celestisiesy may be carried
out using equations (37), (38), (39), (46), (55), and (56).

The weighting procedure as proposed here for the problemmmbming error el-
lipses is not new. Equation 22 appears to be the basis foringesgurce positions
for the 2MASS catalog as described in [1]. However, no mentibwhere this
equation comes from is given. This problem was also dealt lytOrechovesky
[2] in 1996 for military purposes involving geographic Iticas. His formalism
make use of Bayesian methods and Gaussian statistics.tjreéamtion (22) can
be derived very simply by assuming a (multivariate) Gausgrabability distribu-
tion and demanding that the likelihood be a maximum. In @stfithe minimum-
variance derivation of equation (22) presented in se@Bmakes no reference to
Gaussian statistics, and as such may be of more generatyalid

A Appendix

This appendix contains provides the code3drang implementation of the algo-
rithm proposed in this memo. The program isssh script that loads a data file
of input ellipses and writes out the combined result.

For example, consider the three input ellipses describeddifollowing data file:

# alpha delta semi-major semi-minor theta
# [deg] [deg] [arc-min] [arc-min]  [deg]

30 71.6 50 24 18
29.2 717 23 16 27
30.3 723 a7 5 -56

Running theslsh script produces the following output for the combined akip
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60 — =

40— =

20 =

Y [arc-min]

-60 - _
] 1 ] 1 ] I ] 1 ] 1 ] 1 ] 1
-60 -40 -20 0 20 40 60

X [arc-min]

Figure 1:The input ellipses are shown in green and the resulting coscbellipse is in
red. Ther andy values represent tangent plane coordinates (arc-minutes)

alpha:  30.393794 degrees
delta: 72.236735 degrees
theta: -55.582039 degrees
major: 12.944511 arc-min
minor: 4.854415 arc-min

The input ellipses (green) and the combined ellipse (rezlshown in Figure 1.
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#!/usr/bin/env slsh
require (“readascii");

% This structure will be used to hold information about each e llipse
private variable Ellipse_Type = struct

alpha, delta, phi_major, phi_minor, theta_cel, % celestia
X, Y, sigma_major, sigma_minor, theta, % tangent plane
p_hat, alpha_hat, delta_hat, p_major, p_minor

h
private define dotprod (X, V)
{
return sum(x *y);
}
private define norm (x)
{
return sqrt (sum(x *X));
}
private define new_ellipse (alpha, delta, phi_major, phi_ minor, theta_cel)
{
variable e = @Ellipse_Type;
e.alpha = alpha;
e.delta = delta;
e.phi_major = phi_major;
e.phi_minor = phi_minor;
e.theta_cel = theta_cel;
variable ca=cos(alpha), cd=cos(delta), sa=sin(alpha), s d=sin(delta);
e.p_hat = [ca *cd, sa *cd, sd]; % eq 31
e.alpha_hat = [-sa, ca, O]; % eq 33
e.delta_hat = [-sd xca, -sd *sa, cd]; % eq 34
e.p_minor = e.p_hat  *cos(phi_minor)
+ e.alpha_hat *sin(phi_minor) * cos(theta_cel)
- e.delta_hat * sin(phi_minor) *sin(theta_cel); % eq 35
e.p_major = e.p_hat  *cos(phi_major)
+ e.alpha_hat *sin(phi_major) *sin(theta_cel)
+ e.delta_hat  *sin(phi_major) *cos(theta_cel); % eq 36
return e;
}
private define get_tangent_plane_from_vector (p0O)
{
variable alphaO = atan2 (pO[1], pO[0]);% eq 32
variable delta0 = asin (p0O[2]);
variable ex_hat = [-sin(alpha0), cos(alpha0), O]; % eq 41
variable ey_hat = [-sin(delta0) * cos(alpha0),
-sin(delta0) *sin(alpha0), cos(delta0)]; % eq 42
return pO, ex_hat, ey_hat;
}
private define get_tangent_plane_from_ellipses (ellips es)

variable p0 = 0;
foreach (ellipses)

{
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variable e = ();
p0 += e.p_hat;

}
pO /= norm (pO0); % eq 40
return get_tangent_plane_from_vector (p0);

private define project_ellipse (e, pO_hat, ex_hat, ey hat
{
variable p, p_dot_p0;
variable xa, ya, xa_major, xa_minor, ya_major, ya_minor;

p = e.p_hat;

p_dot_p0 = dotprod (p, pO_hat);

xa = p_dot p0 =+ dotprod (p, ex_hat); % eq 50
a = p_dot_p0 =+ dotprod (p, ey_hat); % eq 51

y

p = e.p_major;

p_dot_p0 = dotprod (p, pO_hat);
xa_major = p_dot_pO * dotprod (p, ex_hat); % eq 50
ya_major = p_dot_pO * dotprod (p, ey_hat); % eq 51

p = e.p_minor;
p_dot_p0 = dotprod (p, pO_hat);

xa_minor = p_dot_p0 * dotprod (p, ex_hat); % eq 50
ya_minor = p_dot_p0 * dotprod (p, ey_hat); % eq 51
ex = xa;
ey = vya;

e.sigma_major
e.sigma_minor
e.theta = atan2 (xa_major-xa, ya_major-ya); % eq 54

}

private define deproject_ellipse (e, p0, ex_hat, ey hat)

{

variable p = p0 + ex xex_hat + ey =*ey hat;

p /= norm(p); % eq 46
e.p_hat = p;

e.alpha = atan2 (p[1], p[O]); % eq 32

e.delta = asin (p[2]);

variable x_major = e.x + e.sigma_major *sin(e.theta);
variable y_major = e.y + e.sigma_major * cos(e.theta);
p = pO + x_major *ex_hat + y major =*ey hat;

e.p_major = p/norm(p); % eq 46

variable x_minor = e.x + e.sigma_minor * cos(e.theta);
variable y_minor = ey - e.sigma_minor * sin(e.theta);
p = p0 + x_minor *ex_hat + y minor =*ey_hat;

e.p_minor = p/norm(p); % eq 46

variable ca=cos(e.alpha), cd=cos(e.delta);

variable sa=sin(e.alpha), sd=sin(e.delta);

e.alpha_hat = [-sa, ca, O]; % eq 33
e.delta_hat = [-sd xca, -sd *sa, cd]; % eq 34
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hypot (xa_major-xa, ya_major-ya); % eq 52
hypot (xa_minor-xa, ya_minor-ya); % eq 53

%

%

eq 55

eq 56



% Equations 37, 38, 39
e.theta_cel = atan (dotprod (e.p_major, e.alpha_hat)

| dotprod (e.p_major, e.delta_hat));

e.phi_major
e.phi_minor

acos (dotprod (e.p_major, e.p_hat));
acos (dotprod (e.p_minor, e.p_hat));

% Implements eq 27
private define ellipse_to_correlation_matrix (e)

{

}

variable sigy2 = e.sigma_major'2, sigx2 = e.sigma_minor-2
variable ¢ = cos(e.theta);

variable s = sin(e.theta);

variable ¢c2 = ¢ *c, S2 = s *§;

variable sx2 = sigx2 *C2 + sigy2 =*S2;
variable sy2 = sigx2 *S2 + sigy2 =*c2;
variable rho_sxsy = ¢ * S* (Sigy2-sigx2);

return _reshape ([sx2, rho_sxsy, rho_sxsy, sy2], [2,2]);

% Implements equations 28, 29, 30
private define correlation_matrix_to_ellipse (matrix, x

{

}

variable sx2 matrix[0,0];

variable sy2 = matrix[1,1];

variable rho2_sxsy = 2 * matrix[0,1];
variable sum = sy2+sx2;

variable diff = sy2-sx2;

variable e = @Ellipse_Type;

ex = x0, ey = y0;

e.theta = 0.5 ~*atan2 (rho2_sxsy, diff);
diff = hypot (diff, rho2_sxsy);

e.sigma_major = sqrt (0.5 *(sum + diff));
e.sigma_minor = sqrt (0.5 *(sum - diff));
return e;

private define inverse_2x2 (a)

{

}

variable det = a[0,0] * a[1,1] - a[0,1] *a[1,0];
if (det == 0.0)

throw RunTimeError, "matrix is singular";
variable al = Double_Type[2,2];

all[0,0] = a[1,1];
al[0,1] = -a[0,1];
al[1,0] = -a[1,0];
alf[1,1] = a[0,0];

return al/det;

% Implememts eq 24
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define combine_ellipses (es)

{

}

variable num

variable Cinv ;

variable mu = 0;

_for (0, num-1, 1)
{

length(es);
o:

variable i = ();

variable e = egJi];

variable C_m = ellipse_to_correlation_matrix (e);
variable Cinv_m = inverse_2x2 (C_m);

mu += Cinv_m # [e.x, e.y];

Cinv += Cinv_m;

variable C = inverse_2x2 (Cinv);
mu = C # mu,
return correlation_matrix_to_ellipse (C, mu[0], mu[1]);

define slsh_main ()

{

variable alphas, deltas, phimajors, phiminors, thetas;

if (_argc != 2)
{
() = fprintf (stderr, "Usage: %s ellipse.dat\n”, __ argv[0]
exit (1);
}
variable infile = __argv[1];

variable num =
readascii (infile, &alphas, &deltas, &phimajors, &phimin

% convert to radians

variable rad_per_deg = PI/180.0;
alphas *= rad_per_deg;

deltas *= rad_per_deg;
phimajors  *= rad_per_deg/60.0;
phiminors  *= rad_per_deg/60.0;
thetas = rad_per_deg;

variable i, e, ellipses = {};
_for i (0, num-1, 1)
{
e = new_ellipse (alphas]i], deltas[i], phimajors]il,
phiminors]i], thetasi]);
list_append (ellipses, e);

variable p0, ex_hat, ey_hat;
(pO, ex_hat, ey hat) = get_tangent_plane_from_ellipses (

foreach e (ellipses)
project_ellipse (e, p0, ex_hat, ey_hat);

variable new_e = combine_ellipses (ellipses);
deproject_ellipse (new_e, p0, ex_hat, ey_hat);
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() = fprintf (stdout,
() = fprintf (stdout,
() = fprintf (stdout,
() = fprintf (stdout,
() = fprintf (stdout,

exit (0);
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