

The Next Generation of Astrophysical
Simulations of Compact Objects

Christian Reisswig

Caltech

Einstein Symposium 2014

Motivation: Compact Objects
Astrophysical phenomena with strong dynamical gravitational fields

Compact object coalescence:
 Binary black holes,
 Binary neutron stars,
 Black hole - neutron star binaries

Black hole formation:
collapse of massive and
supermassive stars

Sources for powerful gravitational waves!

Reisswig+, Phys. Rev. D, 2009

Moesta+, ApJ Lett. 2014

Reisswig+, Phys. Rev. D, 2013

Reisswig+,Phys. Rev. D, 2011
Ott, Reisswig+, Phys. Rev. Lett., 2011

Central Engines for lGRBs

~100 ms

Rapidly rotating
massive evolved star

Protoneutron star + stalled shock

Still not clear
how lGRB

central engine
forms and
operates!

Central Engines for lGRBs

~100 ms

~100 m
s

Simulations of collapsars stop here

Rapidly rotating
massive evolved star

Protoneutron star + stalled shock

Black hole formation + hyperaccretion
(Protomagnetar?)

e.g. Ott, Reisswig+, Phys. Rev. Lett. (2011),
 Cerda-Duran+, ApJ 2014,
 Sekiguchi+, ApJ 2011

Central Engines for lGRBs

Simulations of lGRBs start here

~100 ms

~100 m
s

Simulations of collapsars stop here

Rapidly rotating
massive evolved star

Protoneutron star + stalled shock

Black hole formation + hyperaccretion
(Protomagnetar?) Disk + jet formation

(e.g. Milosavljevic+ 2012, Lindner+ 2010,
 Bucciantini+ 2009, Proga+ 2003, Zhang+ 2004)

Central Engines for lGRBs

Goal: Self-consistent 3D simulations of stellar collapse → disk / jet formation

Simulations of lGRBs start here

~100 ms

~100 m
s

~ 1 s

Simulations of collapsars stop here
not modeled

Rapidly rotating
massive evolved star

Protoneutron star + stalled shock

Black hole formation + hyperaccretion
(Protomagnetar?) Disk + jet formation

Supermassive Star Collapse

Cools and contracts
 until
 onset of
general relativistic
 collapse

Radiation pressure dominated,
 104 < M < 108 M

sol

Possible pathway for
supermassive BH formation

at z>7!

Supermassive Star Collapse

Cools and contracts
 until
 onset of
general relativistic
 collapse

Depending on
rotation, mass,
metalicity

Thermal bounce

due to explosive

H/He burning

Extremely energetic supernova
explosion (~1055 erg)

Formation of first supermassive
black holes at z>7Radiation pressure dominated,

 104 < M < 108 M
sol

(e.g. Chen+ 2014, Montero+ 2012,
 Linke+ 2001, Fuller+ 1986)

(e.g. Reisswig+ 2013, Saijo+ 2009,
 Zink+ 2007, Shibata+ 2002)

Supermassive Star Collapse

Cools and contracts
 until
 onset of
general relativistic
 collapse

Depending on
rotation, mass,
metalicity

Thermal bounce

due to explosive

H/He burning

Formation of first supermassive
black holes at z>7

EM signals visible to NASA's JWST, WFIRST,
and ESA's Euclid! GWs detectable by eLISA

Radiation pressure dominated,
 104 < M < 108 M

sol

(e.g. Whalen+ 2013)

Extremely energetic supernova
explosion (~1055 erg)

Supermassive Star Collapse

Cools and contracts
 until
 onset of
general relativistic
 collapse

Depending on
rotation, mass,
metalicity

Thermal bounce

due to explosive

H/He burning

Formation of first supermassive
black holes at z>7

EM signals visible to NASA's JWST, WFIRST,
and ESA's Euclid! GWs detectable by eLISA

Radiation pressure dominated,
 104 < M < 108 M

sol

Goal: Self-consistent models of collapse / explosion dynamics; predict observable signals

(e.g. Whalen+ 2013)

Extremely energetic supernova
explosion (~1055 erg)

Multiscale Multiphysics Simulations

● Magnetohydrodynamics (dynamics of fluid)

● Non-linear gravity (neutron stars, black holes, gravitational waves)

● Complex microphysics (Equation of state, nuclear reaction networks)

● Radiation transport (neutrinos, photons)

Core-collapse Supernovae Black Hole Formation Binary Neutron Stars

Extremely computationally complex systems!
All four forces of nature at work!

Ott+ 2013, Abdikamalov+ 14 Reisswig+ 2013, Ott+ 2011 Rezzolla+11

● Multiple scales (black holes, accretion disks / ejecta, gravitational wave-zone)

● Intrinsically Multi-D (hydrodynamic instabilities, turbulence, rotation)

Multiscale Multiphysics Simulations

Ott+ 2013, Abdikamalov+ 14 Reisswig+ 2013, Ott+ 2011 Rezzolla+11

Extremely computationally complex systems!
All four forces of nature at work!

Core-collapse Supernovae Black Hole Formation Binary Neutron Stars

Multiscale Multiphysics Simulations
Current state-of-the-art simulations fall short in multiple ways!

Trade-offs in: Gravity,
 Radiation transport,
 Microphysical complexity,
 Dimensionality

Multiscale Multiphysics Simulations
Current state-of-the-art simulations fall short in multiple ways!

Trade-offs in: Gravity,
 Radiation transport,
 Microphysical complexity,
 Dimensionality

Correct dynamics not captured!
Limited signal predictions!

Multiscale Multiphysics Simulations
Current state-of-the-art simulations fall short in multiple ways!

Trade-offs in: Gravity,
 Radiation transport,
 Microphysical complexity,
 Dimensionality

Extremely challenging for current computer simulations!
 Limited scaling
 (need to run on 100,000+ cores)

 Algorithmic complexity
 (need to combine different discretization
 schemes)

e.g. LRZ SuperMUC: O(100,000) cores

Just use larger computers??

Correct dynamics not captured!
Limited signal predictions!

Multiscale Multiphysics Simulations

● Multiblock adaptive-mesh refinement (e.g. forests of oct-trees)

● Particle-in-cell methods (→ Monte-Carlo radiation transport)

● Extra grids (e.g. GW extraction, apparent horizon finding)

● Smoothed-particle hydrodynamics (for very low density material)

● Moving voronoi meshes?

May require different coupled discretization schemes

Multiscale Multiphysics Simulations
Future (and current) machines achieve
 higher computational power via many cores!
 Also: GPUs, Intel Xeon Phi

 We need to distribute the computational load across
 many processing units!

Multiscale Multiphysics Simulations
 We need to distribute the computational load across
 many processing units!

Internode communication: Network, e.g. via Message Passing Interface (MPI)

Distributed memory!

Multiscale Multiphysics Simulations
 We need to distribute the computational load across
 many processing units!

Intranode parallelization: Threads

Shared memory!

Multiscale Multiphysics Simulations
 We need to distribute the computational load across
 many processing units!

Ideal world: Problem size is big / want more performance

 → just use bigger computer (more cores)

You want twice as much speed, simply use twice as many cores!

Scaling

Multiscale Multiphysics Simulations
Must use highly parallel algorithms!
 (1,000 → 100,000+? cores)

Problems

Simulation load is data dependent and can
change unpredictably during simulation
 (AMR, particles)

Particles can cluster

Some grids may be located only on
certain processors (GW extraction, AH finding)

→ We require some sophisticated
 load-balancing scheme!

→ Starvation

Data exchange between processes:

→ Communication overhead / latencies

Multiscale Multiphysics Simulations
Must use highly parallel algorithms!
 (1,000 → 100,000+? cores)

Problems

Simulation load is data dependent and can
change unpredictably during simulation
 (AMR, particles)

Particles can cluster

Some grids may be located only on
certain processors (GW extraction, AH finding)

→ We require some sophisticated
 load-balancing scheme!

→ Starvation

→ Communication overhead / latencies

Data exchange between processes: RIP scaling

Orchestration of Simulation

Classical “static” execution model:
● Routines are executed in a predefined order

● Interprocess communication happens synchronously

starvation latency

starvation latency

Orchestration of Simulation

Classical “static” execution model:
● Routines are executed in a predefined order

● Interprocess communication happens asynchronously

starvation latency

starvation

Orchestration of Simulation

Ideal execution model:
● Routines are executed out of order

● Interprocess communication happens asynchronously

Can be achieved by task-based parallelism!

Orchestration of Simulation

Ideal execution model:
● Routines are executed out of order

● Interprocess communication happens asynchronously

NOTE: Starvation and Latencies can still occur!

Need enough “tasks” to execute: task granularity

Higher task granularity will cause additional “bookkeeping” overhead!

Task granularity vs bookkeeping overhead

Task-based parallelism
● Each computational routine represents a “task”

● Each task depends on input, and defines its output

● Task can only be executed once input is “ready”

Functional programming style! (E.g. Haskell, C++ template meta-programming)

Task-based parallelism
● Each computational routine represents a “task”

● Each task depends on input, and defines its output

● Task can only be executed once input is “ready”

NOTE: Tasks do NOT just represent mapping grid functions onto others!
 They are more fine grained!

Implementation
 (Examples)

Uintah: Fire and explosion simulations
 AMR + particle-in-cell

With task-based parallelism:
 Strong scaling up to 250,000 cores!

Homegrown via MPI

High Performance ParalleX (HPX): Hartmut Kaiser et. al. (LSU)

 unified programming model for parallel and distributed applications

 Not a simulation code.

 “Replaces MPI”: don't worry about lower level parallelization paradigms
 like threads or message passing

Center for the Simulation of
Accidental Fires and Explosions (C-SAFE)

Hadoop / MapReduce: Google, parallel database queries

SIMsalabim
A new framework using task-based parallelism

Forests of oct-tree grids
Particle-in-cell methods

General-relativistic magnetohydrodynamics

Finite volumes / finite differences

Monte-Carlo radiation transport

Smoothed-particle hydrodynamics

Forests of oct-trees: Logic in SIMsalabim

For each octant, we have a separate task wrapping some function F

Advantage: We have plenty of tasks that can execute in parallel!

Disadvantage: Manually define objects and tasks for each octant separately??? INSANE!!

Solution: Design a high-level driver that provides a high-level user interface!

...

High level

Autom. defined by “octreeForest driver”

SIMsalabim: Load-balancing and Work-stealing

Work-stealing within one MPI process:
 Handled automatically by Intel Threading Building Blocks

General strategy: - Load-balancing every few steps ([hierarchical] global operation)
 - Work-stealing for unpredictable imbalances (can be expensive)

Inter-process work-stealing strategy:

1) Among all available processes, pick the one with the highest load (#ready tasks)
 and ask for a task.
2) Victim process sends task (+ all associated input data) with
 highest work/data ratio (or denies/doesn't answer → retry with another process).
3) Idling process executes task and sends back result to origin.

When local scheduler idles:

Oct-trees and task-based parallelism

Nominal octant

Octant with GZs attached (temporary object)

Proc 3

Proc 2

Proc 0

Proc 1 Example: WaveToy2D

Current state

WaveToy2D tested on a few number of nodes (multi-process, multi-threading)

Simple work-stealing test over multiple nodes. Good scaling within tested range.

Next step: Put hydro + spacetime finite-volume / finite difference solver into SIMsalabim

Summary

● Simulation of compact objects are demanding:
we require tremendous computational power

● Future computers are massively parallel

● Need to overcome starvation and
communication latency

● Asynchronous out-of-order scheduling:
Task-based parallelism
 → shown to scale to >200,000 cores

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

