Rapidly rotating black holes in Chern-Simons gravity: Decoupling limit solutions and breakdown

Leo C. Stein

Cornell University

Einstein Fellows Symposium, Cambridge, MA, 29 Oct. 2014

Phys. Rev. D 90, 044061 (2014) [arXiv:1407.2350]

Motivation

- GR successful but incomplete
 - GR+QM=new physics (e.g. BH thermo)
 - Planck scale phenomena? Other scales?
 - Expect GR is low-energy EFT
- Ask nature
 - So far, only weak-field tests
 - Lots of theories \approx GR
 - Need to explore strong-field
 - Strong curvature non-linear

Motivation

- GR successful but incomplete
 - GR+QM=new physics (e.g. BH thermo)
 - Planck scale phenomena? Other scales?
 - Expect GR is low-energy EFT
- Ask nature
 - So far, only weak-field tests
 - Lots of theories \approx GR
 - Need to explore strong-field
 - Strong curvature non-linear

What phenomena come from UV completions?

Theories

Fundamental approach:

- String theory Loop quantum gravity
- TeVeS Einstein-Æther Hŏrava
- Massive gravity dRGT bi-metric
- . . .

Pedestrian approach: effective field theory

- Learned from cond-mat, then nuclear and hep-th
- Theory with separation of scales
- "Integrate out," effective theory for long (or short) wavelengths
- Works backwards!

Theories

Fundamental approach:

- String theory Loop quantum gravity
- TeVeS Einstein-Æther Hŏrava
- Massive gravity dRGT bi-metric
- ...

Pedestrian approach: effective field theory

- Learned from cond-mat, then nuclear and hep-th
- Theory with separation of scales
- "Integrate out," effective theory for long (or short) wavelengths
- Works backwards!

EFT works

Worked for describing superconductivity, predicting W, higgs, etc.

Try to build EFT for gravity

- Metric, general covariance, Lorentz invariance
- Lowest order dynamical theory is $\Lambda + GR!$

Beyond GR: add new ℓ—want to constrain this

Dynamical Chern-Simons Gravity

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \vartheta)^2 + \frac{m_{\rm pl}}{8} \ell^2 \vartheta *RR \right]$$

- Anomaly cancellation, low-E string theory, . . .
- Lowest-order EFT with parity-odd ϑ , shift symmetry (long range)
- Phenomenology unique from other \mathbb{R}^2 (e.g. Einstein-dilaton-Gauss-Bonnet)
- Tractable
- Straw-man theory

Decoupling limit

- Most EFTs don't make sense as exact theories (see e.g. Delsate+Hilditch+Witek)
- (Almost) All corrections introduce new ℓ
- Can't be too long
- ullet Expand fields, EOMs in powers of $\ell/\mathcal{R}_{\mathrm{BG}}$, perturbation scheme

Question: What is regime of validity of decoupling limit?

How do we constrain ℓ in dCS from astronomical observations?

• dCS is higher-curvature and parity-odd

How do we constrain ℓ in dCS from astronomical observations?

dCS is higher-curvature and parity-odd

$$\Box \vartheta = -\frac{m_{\rm pl}}{8} \ell^2 *RR,$$

- Want *RR as large as possible \implies smallest M, largest $\chi = J/M^2$
- ullet NSs have small M, but BHs have $\chi
 ightarrow 1$

Want solutions for rapidly rotating black holes in dCS

Black holes in dCS

- a=0 (Schwarzschild) is exact solution with $\vartheta=0$
- Analytically known solutions in decoupling limit
 - $a \ll M$ limit up to $\mathcal{O}(a^2)$, valid $\forall r$ (see Yunes+Pretorius, Yagi+Yunes+Tanaka)
 - $r \gg M$ limit for l = 1, valid $\forall a$ (see Yagi+Yunes+Tanaka)
- I construct numerical solutions $\forall r, \forall a$

Takeaway

- I construct numerical solutions $\forall r, \forall a$ for dCS BHs in decoupling limit
- I use solutions to determine the regime of validity of PT

- This can be turned around to forecast bounds $\ell\lesssim 22$ km from GRO J1655–40 ($M=6.30\pm0.27M_{\odot}$, $\tilde{a}\approx0.65$ –0.75)
- For details see Phys. Rev. D 90, 044061 (2014) [arXiv:1407.2350]

Equations to solve

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \vartheta)^2 + \frac{m_{\rm pl}}{8} \ell^2 \vartheta *RR \right]$$
$$\square \vartheta = -\frac{m_{\rm pl}}{8} \ell^2 *RR$$
$$m_{\rm pl}^2 G_{ab} + m_{\rm pl} \ell^2 C_{ab} = T_{ab}^{(m)} + T_{ab}^{(\vartheta)}$$

• $g^{ab}C_{ab}=0$

Decoupling limit

Take $\ell^2 \to \varepsilon \ell^2$ and expand in ε ,

$$\vartheta = 0 + \varepsilon \vartheta^{(1)} + \frac{\varepsilon^2}{2} \vartheta^{(2)} + \dots$$
$$g = g_{GR} + \varepsilon 0 + \varepsilon^2 h^{def} + \dots$$
$$\square_{GR} \vartheta^{(1)} = -\frac{m_{pl}}{8} \ell^2 *RR[g_{GR}]$$

Don't yet have quantity to test validity of perturbation theory

Next order

$$m_{\rm pl}^2 G_{ab}^{(1)}[h^{\rm def}] = T_{ab}^{(\vartheta)}[\vartheta^{(1)},\vartheta^{(1)}] - m_{\rm pl} {\color{red}\ell^2 C_{ab}}[\vartheta^{(1)}]$$

- Trace equation
- \bullet Lorenz gauge $\nabla_a \bar{h}^{ab} = 0$

$$\frac{1}{2}m_{\rm pl}^2\Box h^{\rm def} = -(\nabla^a\vartheta^{(1)})(\nabla_a\vartheta^{(1)})\,,$$

- Same scalar PDE operator
- Caveat: gauge-dependent but should still capture a-dependence

Next order

Now can make comparison:

$$\sqrt{-g} = \sqrt{-g_{\rm GR}} \left(1 + \varepsilon^2 \frac{1}{2} h^{\rm def} + \mathcal{O}(\varepsilon^3) \right)$$

- If $h^{\mathrm{def}} \sim \mathcal{O}(1)$, should keep higher $\mathcal{O}(arepsilon)$
- Criterion for validity of PT:

$$|h^{ ext{def}}| \lesssim 1$$
 everywhere

ullet Program: Solve for $artheta^{(1)}, h^{\mathrm{def}}$ as functions of r, heta for all a

Approach to solving

Symmetry reduced, $\vartheta = \vartheta(r, \theta)$. $\square \to \Delta$.

Analytical:

- ullet Static Green's function Δ^{-1} known analytically
- Separation of variables

$$\vartheta = \sum_{j} \vartheta_{j}(r) P_{j}(\cos \theta)$$

 Can do source decomposition (See Konno+Takahashi and [arXiv:1407.0744])

Resort to numerics!

Numerical approach

- Elliptic PDE. Could solve hyperbolic, parabolic, relaxation scheme
- Numerical separation of variables. Each j mode is an ODE.
- ullet Compactify r
- Pseudospectral collocation method
- Directly solve discrete ODE operator ("numerical Green's function")

Numerical approach

- For each a, find $\vartheta(r,\theta;a)$, compute $(\partial\vartheta)^2$, find $h^{\mathrm{def}}(r,\theta;a)$
- ullet Evaluate $\max |h^{
 m def}|$ and find regime of validity

Exponential convergence

Exponential convergence

Exponential convergence

Regime of validity

Forecasting bounds

- Observation of BH indistinguishable from GR predictions
- Size of ℓ correction below breakdown (caveat: cancellation)
- GRO J1655–40: $M = 6.30 \pm 0.27 M_{\odot}$, $\tilde{a} \approx 0.65$ –0.75

ullet Better by 10^7 than Solar System bounds

Future work

- $a \to GM$ limit analytically?
- All a analytically?
- Rest of the metric
- · Accretion disk modeling

Takeaway

- I construct numerical solutions $\forall r, \forall a$ for dCS BHs in decoupling limit
- I use solutions to determine the regime of validity of PT

- This can be turned around to forecast bounds $\ell \lesssim 22$ km from GRO J1655–40 ($M=6.30\pm0.27M_{\odot}$, $\tilde{a}\approx0.65$ –0.75)
- For details see Phys. Rev. D 90, 044061 (2014) [arXiv:1407.2350]