Low-frequency Radio Observations of **Galaxy Cluster Merger Shocks**

Reinout van Weeren

^{CfA} Harvard-Smithsonian Center for Astrophysics

H. Intema, A. Stroe, G. Ogrean, F. Andrade-Santos W. Forman, C. Jones, M. Brüggen, H. Röttgering, A. Bonafede, G. Brunetti, M. Hoeft

125 Mpc/h

3.1

Vazza+ 2014

blue: X-rays red: radio synchrotron

13

Small fraction of the energy can be channeled into the production of Cosmic Rays

QUESTIONS

- Physics of shocks & turbulence
- Origin of Cosmic Rays (CR) and magnetic fields in the ICM
 - Particle acceleration mechanisms
 - Acceleration efficiency of shocks/turbulence
 - Magnetic field amplification
- Contribution of CRs and B-fields to the ICM pressure budget

DIFFUSE CLUSTER RADIO EMISSION

latest review paper: Brunetti & Jones 2014

Radio (WSRT) + X-rays (XMM)

MACS J1752.0+4440 (van Weeren+ 2012; Bonafede+ 2012)

GIANT RADIO RELICS:

- Cluster outskirts, elongated
- Radio emission traces merger shocks
- Particle acceleration mechanism :
 - diffusive shock acceleration? (Ensslin+ 1998)

X-ray image + radio contours

Abell 2744; Feretti+ 2012, Govoni+ 2001

GIANT RADIO HALOS:

- Smooth, centrally located
- Particle acceleration mechanism:
 - Radio emission generated via turbulent re-acceleration mechanism? (Brunetti+01, ...)
 - Radio emission from secondary electrons (products of hadronic collisions)? (Dennison 1980, ...)

DIFFUSE CLUSTER RADIO EMISSION

latest review paper: Brunetti & Jones 2014

Radio (WSRT) + X-rays (XMM)

X-ray image + radio contours

Abell 2744; Feretti+ 2012, Govoni+ 2001

GIANT RADIO HALOS:

- Smooth, centrally located
- Particle acceleration mechanism:
 - Radio emission generated via turbulent re-acceleration mechanism? (Brunetti+01, ...)
 - Radio emission from secondary electrons (products of hadronic collisions)? (Dennison 1980, ...)

DIFFUSE CLUSTER RADIO EMISSION

latest review paper: Brunetti & Jones 2014

Radio (WSRT) + X-rays (XMM)

X-ray image + radio contours

Abell 2744; Feretti+ 2012, Govoni+ 2001

GIANT RADIO HALOS:

- Smooth, centrally located
- Particle acceleration mechanism:
 - Radio emission generated via turbulent re-acceleration mechanism? (Brunetti+01, ...)
 - Radio emission from secondary electrons (products of hadronic collisions)? (Dennison 1980, ...)

BACKGROUND: RADIO SPECTRAL INDEX

Acceleration produces powerlaw particle distribution

 $n(E) \propto E^{-p}$, $p = I - 2\alpha$

"injection spectral index" & set by acceleration mechanism/ source physical condition

BACKGROUND: RADIO SPECTRAL INDEX

Acceleration produces powerlaw particle distribution

 $n(E) \propto E^{-p}, p = I - 2\alpha$

"injection spectral index" & set by acceleration mechanism/ source physical condition

Energy losses radiating electrons:

- synchrotron losses
- Inverse Compton losses

"Spectral ageing"/ "electron cooling"

 $dE/dt \propto - E^2$

spectrum steepens and curves with time

Origin of the radiating electrons ?

- Radiative lifetime of electrons is 10⁸ yr << diffusion timescale (Jaffe 1977) → electrons are accelerated in-situ in the ICM
- Merger connection: giant radio relics and halos are only found in disturbed galaxy clusters
- ICM: Particle acceleration poorly understood in this regime

Relics: Diffusive shock acceleration (DSA) ?

- Particles accelerated by multiple crossings of a shock front (first order Fermi process)
- Recent PIC simulations show efficient electron acceleration for low-Mach number shocks

Re-acceleration ?

 Relativistic particles accumulated over the lifetime of a cluster

Non-thermal component of the ICM (cosmic rays)

GMRT radio image (325 MHz)

IRXS J0603.3+4214 (z=0.225)

Found by inspecting I.4 GHz NVSS & 325 MHz WENSS radio survey images Non-thermal component of the ICM (cosmic rays)

GMRT radio image (325 MHz)

Follow-up XMM observations by Ogrean+2013:
L_X ~10⁴⁵ erg s⁻¹, T= 7.5 keV

main merger event in the NS direction

evidence for shocks (M~1.5) via surface
 brightness jumps

IRXS J0603.3+4214 (z=0.225)

Found by inspecting 1.4 GHz NVSS & 325 MHz WENSS radio survey images

XMM X-ray image (+radio contours)

Ogrean+2013; van Weeren+2012

Non-thermal component of the ICM (cosmic rays)

GMRT radio image (325 MHz)

Follow-up XMM observations by Ogrean+2013:
L_X ~10⁴⁵ erg s⁻¹, T= 7.5 keV

main merger event in the NS direction

evidence for shocks (M~1.5) via surface
 brightness jumps

IRXS J0603.3+4214 (z=0.225)

Found by inspecting 1.4 GHz NVSS & 325 MHz WENSS radio survey images

XMM X-ray image (+radio contours)

Ogrean+2013; van Weeren+2012

LOFAR

- New radio telescope operating at 10-250 MHz
- About 50 antenna stations
 - 40 stations in the Netherlands
 - stations in Germany, UK, Sweden, France, Poland
- Large range of baselines (100 m 1,000 km)
- Phased-array technology (multi-beaming)

LOFAR results

120-180 MHz, 95 microJy/beam rms noise

emphasize large-scale emission with weighting

LOFAR results

120-180 MHz, 95 microJy/beam rms noise

emphasize large-scale emission with weighting

shock: particle injection

shock: particle injection

energy losses

energy losses

energy losses.

shock: particle injection

energy losses

energy losses

energy losses

energy losses

Re-acceleration due to turbulence ??

shock: particle injection

Ogrean+ 2013

best fit shock position

- North: Mismatch between relic emission and shock location
- South: Shock but no bright radio relic

Ogrean+ 2013

best fit shock position

- North: Mismatch between relic emission and shock location
- South: Shock but no bright radio relic

SUMMARY

- First ultra-deep LOFAR cluster image
- Radio halos: CR electrons from shocks re-accelerated by merger induced turbulence ?
- Puzzle: Shock without clear radio relic ?
- Puzzle: Mismatch between relic and shock location ?