Simulating the Effect of Massive Neutrinos on Large-Scale Structure

Simeon Bird Johns Hopkins University arXiv:1209.0461

Massive Neutrinos

Neutrinos are last standard model particles without known mass

The last stamp in the collection!

Massive Neutrinos

- We know the mass difference between neutrino species (neutrino oscillations)
- Don't know total mass: very hard to do with particle physics because

$$m_{\nu} \sim 0.5 \text{eV} \ll m_{\text{e}} = 511 \text{keV}$$

• Solution: do cosmology on background neutrinos

Cosmic Neutrino Background

- 1 neutrino per photon produced during
 Big Bang Nucleosynthesis: z = 10⁹, T = 1 MeV
- Relativistic at decoupling

Total density today:

$$\Omega_{\nu} = \frac{M_{\nu}}{93.14h^2}$$

Neutrinos are hot dark matter Don't cluster on small scales, suppress matter power spectrum

Effect on matter power spectrum

• To get to lower mass limit of 0.05 eV, need to measure power at percent level

• First step: how do you quantify effect at this precision on non-linear scales?

Effect on matter power spectrum

Simulating Neutrinos as Particles

Neutrinos are fast-moving dark matter: Do N-body like CDM

(Viel 2010)

CDM Neutrinos

Numerical problems due to discretizing neutrinos Worse for small masses, only works for > 0.1 eV

Particle Neutrinos

- Some problems with this method
 - Discretization noise
 - Early-time relativistic effects
 - No neutrino hierarchy

- Hard and expensive to perform
 - Large thermal velocity numerically tricky
 - Doubles memory consumption

Simulating Neutrinos

Neutrinos free-stream

Clustering sourced by (non-linear) CDM potential well

Linear Neutrinos, Non-Linear CDM

Neutrino power is given by perturbation theory with non-linear CDM potential

$$P_{NL}^{2}(k) = f_{CDM}P_{NL,CDM}^{2} + f_{\nu}P_{L,\nu}^{2}$$
From N-body timestep Perturbation th

sourced by N-body

Works in the small mass limit Same cost as CDM Public code

Ali-Haimoud & Bird arXiv:1209.0461 https://github.com/sbird/fs-neutrino

Experiments

- Cluster counts: σ_8^8
- Weak Lensing (LSST): small scales
- Lyman-alpha forest: low densities
- CMB lensing: low systematics