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Cosmological structure from inflation
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Primordial non-gaussianity

Departure from Gaussian statistics reveals physics beyond single-field inflation
(1) nonlinear coupling (negligible in minimal model)
(2) new degrees of freedom
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squeezed bispectrum scaling

Need o(fNL)~O(1) to distinguish between models (Alvarez et al 2014)
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Probing non-gaussianity with large-scale structure
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Scale-dependent galaxy bias (Dalal, Dore, Huterer & Shirokov 2008)

Galaxies are biased tracers of DM halo/galaxies form 4
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Separate universe: spherical top-hat overdensity
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Valid in full general relativity!



Conformal Fermi Coordinates (CFC) (Lp, pajer & schmidt 2015)

Einstein’s elevator
Fermi Normal Coordinates
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Separate universe in CFC (LD, Pajer & Schmidt 2015)

The usual FNC .
homogeneous expansion
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Advantages compared to FNC:
» Ability to extrapolate to (super-)horizon scales
* Physical definition of local expansion rate



Conditions for separate universe

‘

e Local curvature Kp = %5)272
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Consider multiple fluids | = 1,2,3, ...
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e Exact “local universe” conditions (always true for matter + CC):

e NO anisotropic stress
e ALL fluids co-move along geodesics (free-falling)
e Non-adiabatic pressure allowed

e Approximate conditions:
e Sound horizons small
e “Dark energy” component w = -1



Calculating in CFC: squeezed matter bispectrum

First add small-scale perturbations
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Usual Euler-Poisson system
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Formally identical to Newtonian, but extrapolate to k; < aH :
* equal proper time
 proper wavelength
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A previous confusion is resolved

Scale-dependent biasing from general relativity? flocal — _5/3

Argument: nonlinear relation between initial density and initial curvature
in full GR.

density fluctuation
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What was overlooked: (LD, Pajer & Schmidt 2015; de Putter, Dore & Green 2015)
short-wavelength is not measured in proper units; a long-wavelength metric
perturbation modulates local proper distance measure.

NO scale-dependent bias from GR (Baldauf, Seljak, Senatore & Zaldarriaga 2015)
NO scale-dependence in halo/galaxy shape correlation induced by GR
(Schmidt, Chisari & Dvorkins 2015)

Or any other correlation in halo/galaxy properties at linear order in metric



Project'icn effects (e.g. Jeong, Schmidt & Hirata 2012
Camera, Santos & Maartens 2015)
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Assume no physical clustering source redshift z



Overview of large-scale clustering
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Conclusion

® Galaxy clustering on large scales is a promising probe of (local-
type) primordial non-gaussianity. o(fNL)~O(1) requires accurate
description in general relativity.

® \Ve construct CFC in which local dynamical effects of a long-
wavelength perturbation on structure formation is isolated. In full
general relativity, the effect is equivalent to a modified expansion rate
and curvature, plus a tidal force.

® \We disprove a scale-dependent biasing caused by general
relativistic dynamics. Detection of honzero scale-dependent bias, if
not explained by relativistic projection effects, is a smoking gun of
new physics beyond single-field inflation.






