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Collimation and propagation dynamics in magnetized flows
Radiative and reverse-radiative shock systems

Collisionless shock interactions

Instabilities in plasma - RT, RM, KH, MRI, MTI

Equation of state - planetary and stellar interiors

Nucleosynthesis - relevant Gamow energies in a ‘thermal’ plasma
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Relativistic plasmas is an emerging field in laboratory astrophysics

» Many of the most energetic events in our universe involve relativistic
plasmas: GRBs, collisionless shocks - cosmic ray generation, etc.

» The plasma must be near neutral and exhibit collective behavior to study
astrophysically relevant dynamics

> Intense lasers provide a unique opportunity to study the detailed physics
of these relativistic systems under controlled conditions




Gamma-ray Bursts emit high-energy radiation
in prompt and extended durations

Image Credit: NASA's Goddard Space Flight Center

http://www.nasa.gov/content/goddard/nasa-sees-watershed-cosmic-blast-in-unique-detail et cellfieles witlh
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Relativistic plasma physics relevant to GRBs
can be studied in the laboratory

Relativistic interacting “fireball” interacts
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The laboratory “fireball” must behave as a plasma
to be relevant to astrophysical dynamics
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A plasma with these characteristics may be created in
the laboratory with ultra short-pulse laser systems.

Sarri, Nat. Comm. 15 (2015)



Relativistic pair-production in the laboratory
requires relativistic electrons

Trident Process Bethe-Heitler (BH) Process
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The Bethe-Heitler process dominates pair-production in
materials with high atomic number (2).

Shearer, PRA 8 (1973), Heitler (1954)



Creating a relativistic plasma jet in the lab is a 2-phase process
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Creating a relativistic plasma jet in the lab is a 2-phase process
Phase |. Generate a relativistic electron bunch
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“Wakefield acceleration” provides an efficient mechanism to
create tailored relativistic electron bunches

Tajima, PRL 43 (1979); McGuffey, PRL 104 (2010)



Creating a relativistic plasma jet in the lab is a 2-phase process
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Creating a relativistic plasma jet in the lab is a 2-phase process

Radiation Length [cm]

Phase |I: Convert electrons to pairs

For >10 MeV electrons
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To create a quasi-neutral electron-positron jet,
Lblock = SLrad

and scattering in the block must be accounted for.




Creating a relativistic plasma jet in the lab is a 2-phase process
Phase |I: Convert electrons to pairs
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To create a quasi-neutral electron-positron jet,
Lblock = SLrad

and scattering in the block must be accounted for.

Sarri, Nat Comm 6 (2015)



Creating a relativistic plasma jet in the lab is a 2-phase process
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This technique can create a quasi-neutral relativistic
plasma jet that behaves collectively.




Relativistic electron-positron jets can be created to
investigate physics relevant to GRBs

interacting
“fireballs”
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“fireball” interacts

with ISM

- double-peaked spectrum for
the electron-positron plasma

- Interaction with background
plasma or gas

Measured y-ray spectra from these well characterized
systems will provide concrete data to benchmark models.




PIC simulations suggest that filamentary structure
will form in a background plasma

50:50 electron:positron jet traversing a uniform electron-ion plasma
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- Syncrotron emission from the self-generated/amplified fields
- Filament generation and characterization
- Collisionless shock formation
- Particle acceleration

Sarri, Nat Comm 6 (2015), Muggli arXiV:1306.4380v1



Relativistic plasmas is an emerging field in laboratory astrophysics
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