Tidal Disruption Events and Their Surprising Host Galaxy Preference

Iair ("ya-eer") Arcavi University of California, Santa Barbara

A Tidal Disruption Event (TDE) is Complicated

Important Scales

$$R_T \gtrsim R_S \text{ for } M_{BH} \lesssim 10^8 M_{\odot} \cdot \left(\frac{R_*}{R_{\odot}}\right)^{3/2} \left(\frac{M_*}{M_{\odot}}\right)^{-1/2}$$

Motivation: Study SMBHs

TDEs can be used to study quiescent massive black holes (and the M-Sigma relation) beyond the nearby Universe

Not A New Idea, But Events Are Rare

Hills (1975) – A star could be disrupted by a massive BH.

Rees (1988), Phinney (1989), Evans & Kochanek (1989) – Half of the material is bound, half unbound, expect emission when the bound material falls back to the BH as t-5/3.

From the accretion onto the SMBH, expect emission in **soft x-rays and hard UV**.

Donley et al. (2002), Wang & Merritt (2004), Kesden (2012), Stone & Metzger (2014) – Rate is 10⁻⁴-10⁻⁵ events per galaxy per year.

Early Observations Were Archival, Sparse Data

ROSAT (X-Rays) – 5 archival candidates (Donley et al. 2002).

XMM-Newton (X-Rays) – 5 additional archival candidates (Esquej et al. 2007).

SDSS (optical) – 2 archival candidates (van Velzen et al 2011).

GALEX (UV) + CFHT (optical) – one candidate (~year cadence light curve; Gezari et al. 2006).

Two Major Discoveries in 2011 and 2012

Swift J1644

(Bloom et al. 2011, Burrows et al. 2011, Levan et al. 2011, Zauderer et al. 2011)

PS1-10jh (Gezari et al. 2012)

Gamma and X-rays, radio No optical UV / Optical No X-rays

Non-thermal spectrum
Plateau in X-ray light curve
then ~t^{-5/3} decline

Hot blackbody (30,000K) Smooth rise and fall light curve ~t^{-5/3} decline

Two Major Discoveries in 2011 and 2012

High Energy TDEs

Swift J1644

(Bloom et al. 2011, Burrows et al. 2011, Levan et al. 2011, Zauderer et al. 2011)

Gamma and X-rays, radio No optical

Non-thermal spectrum
Plateau in X-ray light curve
then ~t^{-5/3} decline

Additional events:

Swift J2058 (Cenko et al. 2012), Swift J1112 (Brown et al. 2015)

Optical+NUV TDEs

PS1-10jh (Gezari et al. 2012)

UV / Optical No X-rays

Hot blackbody (30,000K)
Smooth rise and fall light curve
~t^{-5/3} decline

Additional events:

Arcavi et al. 2014, Holoien et al. 2014, 2016a,b, Wyrzykowski et al. 2016

Why Two So Different Types of TDEs?

Bloom et al. (2011): Viewing angle effect

Dai et al. (2015): β effect

PS1-10jh: The First Optical + NUV TDE

- Coincident with the center of a non-starforming galaxy.
- Peak magnitude -20
- Constant blue colors
- Only broad He II in spectrum

PS1-10jh: Hotter Than Supernovae

PS1-10jh: Spectra Not Like Any Known Supernova

PS1-10jh Does Not Look as Expected for a TDE

Expected

Center of galaxy

$$L \propto t^{-5/3}$$

$$T \sim 10^5 - 10^6 \,\mathrm{K}$$

$$R \sim R_T \sim 10^{13} \, \text{cm}$$

$$E \sim 0.1 M_{\odot} c^2 \sim 10^{53} \, \mathrm{erg}$$

Evolving Temperature

Hydrogen from the star

Observed

Center of galaxy

$$L \propto t^{-5/3}$$

$$T = 3.10^4 \,\mathrm{K}$$

$$R \sim 10^{15} \, \text{cm}$$

$$E \sim 10^{51} \, \mathrm{erg}$$

Constant Temperature

No hydrogen, only helium

Forming a Class, All in Galaxy Centers

Gezari+ 12

Arcavi+ 14

Wang+ 11

Arcavi+ 14 Holoien+ 14

Arcavi+ 14

Arcavi+ 14

van Velzen+ 11

Arcavi et al. 2014

A Class of Events Now, All in Galaxy Centers

1/3 of disrupted stars are helium stars? Not likely.

Motivation: Study SMBHs and Accretion Physics

TDEs can be used to study quiescent massive black holes (and the M-Sigma relation) beyond the nearby Universe

But first, we need to understand the events: what they look like and why, how are the TDE observables related to the SMBH properties

Optical+UV TDEs Prefer Post-Starburst Galaxies

Optical+UV TDEs Prefer Post-Starburst Galaxies

Why do TDEs Prefer Post-Starburst Galaxies?

French, Arcavi, Zabludoff, submitted (arXiv 1609.04755)

Let's Monitor Post-Starbursts - TDE Goldmine?

SEATIDE (Searching E+A galaxies for Tidal Disruption Events) – Running on the LCOGT network for the last year, 100 galaxies, visited once a month.

aSEATIDE – Running on KAIT, 3000 galaxies, visited once a week. Started last month!

Summary

We see "Optical+NUV TDEs" and "High Energy TDEs"

Emission mechanisms under active debate

Peculiar host-galaxy preference = important clue for something:

- Binary SMBHs?
- Specific stars being disrupted?
- Non-spherical central galaxy potentials?
- Something else?

Using this preference to find more TDEs