Tips For Finding Massive Black Hole Binaries: (have any?)

Daniel J. D'Orazio

Einstein Fellowship Symposium Wednesday October 19, 2016

Massive Black Hole Binaries (MBHBs)

 $M_{\rm bin} \sim 10^6 \rightarrow 10^{10} {\rm M}_{\odot}$

- Most energetic gravitational wave sources in the Universe - probe of gravity
- * Can teach us about the mutual evolution of galaxies and MBHs
- * How do we find them? They don't (necessarily) exist in vacuum!

Electromagnetic MBHB evidence/searches

EM signatures: Binary gas accretion Periodic accretion

Binary BH accretion rate: *can exceed the rate for a single BH *can be uniquely modulated

D'Orazio+2016, Shi & Krolik 2015, Farris+2014 D'Orazio, Haiman, & MacFadyen (2013) EM signatures: Binary gas accretion Doppler-boosted modulation

 $\ln \nu$

$$T_{\nu}^{\text{obs}} = D^{3-\alpha} F_{\nu}^{\text{rest}}$$

$$\alpha = \frac{d \ln F_{\nu}}{d \ln \nu}$$

MBHB candidate: PG 1302-102

Graham+2015, Nature

D'Orazio, Haiman, Schiminovich 2015, Nature

Variability in the IR: A lighthouse in the dust?

Variability in the IR: A lighthouse in the dust?

IR light curves: phase shifted + diminished amplitude

Dust Reverberation Model

*Dust is in a torus centered on the periodic MBHB source *Dust is optically thick to UV/optical and optically thin to IR *Integrated blackbody flux observed at retarded time R_d

Dust Reverberation Model

In: Binary period and inclination, torus
inner radius, inclination and opening angle
Out: IR amplitude and phase relative to
UV/optical

(Analytic) Results

Implication for PG 1302?

Summary for IR from MBHB systems

Relative Variability Amplitude - Depends on ratio of dust light travel time to source variability period

IR Phase Lags - Quarter cycle difference between isotropic and Doppler sources

Orphan IR variability - IR periodic variability, with no UV/optical component

PG 1302 - IR emission consistent with dust reprocessing by a thin dusty disk at ~1-4pc - cannot yet distinguish between Doppler and isotropic cases.

Inferring the MBHB population IR predictions provide more evidence for vetting MBHB candidates Multi-wavelength Population Studies ~150 new MBHB Candidates from Graham+2015b –

Charisi+2015(x's)

