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Embedding galaxies in  
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Implications:

Fewer subhalos to punch holes in stellar streams

More ultra-faint galaxies predicted at r > 100 kpc

Lower “substructure boost” for DM annihilation/decay

Flatter Mstar - Mhalo relationship implied

Shorter (< 2 Gyr) quenching timescales for dwarfs
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100 kpc

DMO embedded disk FIRE

How much of the stripping/destruction is due to the galaxy?
How well do we reproduce FIRE with the potential?

GK+, in prep 

How effective is the disk?
Visualizing the local DM density
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100 kpc

DMO embedded disk FIRE

GK+, in prep 

How effective is the disk?
Visualizing the local DM density

Simple model matches mass function and radial profiles 
within ~25% vs 100-500% errors in pure DMO
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No trend in Vpeak:  destroys subhalos at all masses
Captures destruction better than stripping
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Anisotropic subhalo orbits
*Particle masses in DMO simulations reduced by (1-fb) GK+, in prep 

DMO overpredicts low Vtan subhalos by a factor of 30 
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Anisotropic subhalo orbits
*Particle masses in DMO simulations reduced by (1-fb) GK+, in prep 

Reproduces lack of low Vtan satellites
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Conclusions
FIRE simulations predict a factor of two depletion in 
substructure counts at fixed mass, with subhalos on 

plunging/radial orbits particularly susceptible to destruction 
But, FIRE simulations are too expensive to provide large 

statistical samples to eliminate halo-to-halo bias and scatter 
Embedding galactic potentials bring subhalo populations to 

within ~25% of predictions from FIRE simulations, implying 
that the Galaxy alone accounts for ≳75% of subhalo depletion 

Substructure predictions can be significantly improved at 
minimal CPU cost with embedded potentials 

Upcoming: Statistical samples of MW-size and group-like 
zooms with embedded potentials (Tyler Kelley+, in prep) 
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An aside:  When and where did GW150914 form? 

Two 30 Msun black holes!

LIGO Collaboration, 2016

Suggests galaxies with low metallicities at birth, but long 
delay times + varying SFR = complicated picture

Calculate merger rate between 30 Msun black holes: 

    galaxy number densities at z = 0 (luminosity function) 
+ gas metallicity, as a function of galaxy mass and redshift 
+ specific star formation rate as a function of redshift 
+ halo merger trees, to capture stars formed at lower [Z/Zsun]   
+ delay times from binary population synthesis models
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formed recently in dwarfs at very low metallicity 
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An aside:  When and where did GW150914 form? 
Lamberts, GK+2016

Bimodal distribution: old binaries in massive galaxies formed 
at high z with relatively high metallicity and young stars 

formed recently in dwarfs at very low metallicity 
Surprisingly flat in host galaxy mass 


