The Effects of Cluster Environment on Radio AGN

Ashley L. KingStanford University

R. E.A. Canning, S. Allen, S. Elhert, A. von der Linden, A. Mantz, G. Morris, E. Noordeh

AGN Come in Two Flavors:

 Radiative, Quasar mode, high-Eddington accretion modes (X-ray AGN)

 Kinetic, Jet-mode, low-Eddington accretion modes (Radio AGN)

Feedback

M-sigma Relation

Gultekin et al. 2009

- Sphere of influence
- 40 pc for 10⁹
 M_{solar} BH
- The velocity dispersions are measured on kpc scales

AGN Come in Two Flavors:

- Radiative, Quasar mode, high-Eddington accretion modes (Xray AGN)
 - measure power:
 - Radiation pressureluminosity
- Kinetic, Jet-mode, low-Eddington accretion modes (Radio AGN)
 - measure power:
 - Cavities

- Jet power
 measured from pdV
 work need to inflate
 cavities scales with
 1.4 GHz radio
 luminosities
 - giant Ellipticals
 - Cavagnolo et al. 2010

AGN Come in Two Flavors:

- Radiative, Quasar mode, high-Eddington accretion modes (X-ray AGN)
- Kinetic, Jet-mode, low-Eddington accretion modes (Radio AGN)

What are the triggering mechanisms?

- Clusters of Galaxies
 - largest gravitationally bound structures in the Universe
 - they are great laboratories to examine numerous effects on the host members including the supermassive black holes and their host galaxies
 - Environment,
 - Mergers,
 - Mass Segregation,
 - Tidal Effects,
 - Gas dynamics,
 - shocks
 - Strangulation/Gas stripping

X-ray AGN Number Density

- Excess in the center R500 above a luminosity of logL_X=43.5 at the cluster redshift
- The fraction of X-ray AGN compared to galaxies is suppressed as compared to the field
- We find an inverse correlation with Mass, which may suggest triggering of AGN by Mergers

AGN Samples

- X-ray AGN Sample (Elhert et al. 2012, 2013, 2014)
 - 135 X-ray selected clusters observed with Chandra and have accurate X-ray determined masses and center of masses (Mantz et al. 2010), >11000 point sources
 - $M_{Cluster} = 10^{14} 10^{15} M_{Solar}$, z = 0.2 0.9, $F > 10^{-14} ergs s^{-1} cm^{-2}$
 - 135 -> 480 clusters (**Canning** et al. In Prep)
- Radio AGN Sample (King et al. In prep)
 - 65 of 135 X-ray Clusters are in the First Sample, 3640 sources
 - 200 in updated sample
 - S_{1.4GHz} > 3mJy -> only Radio-loud AGN and avoid star formation contribution

FIRST Survey

- FIRST survey
 - Incomplete below 2 mJy
 - Star formation becomes important below 3 mJy
 - Developed an algorithm to determine real source pairs and randomly associated pairs within 70"
 - Overlapping sources were considered one source
 - Highest probability sources of being a "real" source, i.e. not a side-lobe or artifact of clean routine (effects mostly the lowest fluxes)
- Types of Sources
 - Point Sources
 - Bipolar Outflows
 - Head Tails
 - Extended emission

Radio AGN Overdensity in Cluster Center (<1 R₅₀₀)

X-ray AGN Overdensity in Cluster Center (<2 R₅₀₀)

Active Cluster AGN Fraction

Low Mass Accretion Rates

- Radio emission is sensitive to:
 - Iow Eddington Accretion
 - may be more efficient at creating jets -> ADAF/Thick Disks
 - Hot Mode Accretion
 - Cold Gas is stripped from the galaxies
 - could also result in an extended disk
 - Massive Black Holes

Mass or redshift evolution?

$$N_{\text{obs}}(>f, r, z) = N \times D_{\text{A}}(z)^2 \times r_{500} \times \Phi(>L_{\text{cut}}, z) \times \left(\frac{r}{r_{500}}\right)^{\beta} + C$$

Projected number density of observed X-ray AGN in a cluster field at a given cluster z, r and above flux limit f

Projected number density of X-ray
AGN expected in cluster above
flux limit

Projected number density
of all field AGN above
flux limit

'Scale factor' which allows number density X to exceed co-moving field AGN

Scaled by radius

X number density at z and above luminosity related to flux limit

X Some radial dependence

Allow a mass and redshift dependence for scale factor (normalisation) and radial scaling

$$N \to N_0 (1+z)^{\eta} \left(\frac{M_{500}}{10^{15} M_{\odot}}\right)^{\zeta} \qquad \beta \to \beta_0 + \beta_z (1+z) + \beta_m \left(\frac{M_{500}}{10^{15} M_{\odot}}\right)$$

Radio AGN Evolution

- Pracy et al. 2014
- 1.4 GHz radio luminosity
 - Low-Excitation Radio Galaxies
 - High-Excitation Radio Galaxies
- LERG and HERG have separate evolutions
 - LERG are relatively constant to z~1
 - HERG evolve more like Quasars

16

Radio AGN Redshift Evolution

Conclusions

· Radio AGN

- Number density is constant or slightly elevated in clusters
 - suggestive of different triggering mechanisms compared to X-ray AGN
- We are currently investigating Cluster mass and redshift dependencies

Extra slides

Radio Cluster AGN

- Both high and low luminosity sources increase in number density at the center
- Log L= 41 is roughly the divide between FR I and FR II sources

Radio Cluster AGN

- Extended sources preferentially increase inside clusters
- Gas pressure increases in clusters, which could confine extended sources but we observe the opposite.

Radio AGN Overdensity in Cluster Center (<1 R₅₀₀)

X-ray AGN evolution

Mass dependence of scale factor

$$\zeta \sim -1.2$$

Scale factor has a M^{-1,2} dependence

$$\zeta$$
= 0 rejected at >99.9%

No other parameters are significantly different from zero

Consistent with Merger Triggering

Spectroscopic Follow-up

VIMOS follow-up program:

Observe 10, z=0.35 - 0.4, relaxed clusters

Aims:

- Examine X-ray AGN host relationship
- Does AGN fraction depend on cluster mass?

Mass and Redshift

Feedback

K. Cordes & S. Brown (STScI)

Feedback

K. Cordes & S. Brown (STScI)

Optical follow-up

Next step: Need spectroscopic confirmation

Spectroscopy:

 Within 2" of X-ray position find 7753 objects of 11671, 318 have spectra 49/318 have velocities +-5000 kms⁻¹

Imaging:

 Quantify asymmetries and close pairs in spectroscopically confirmed cluster members

Spectroscopy

VIMOS follow-up program:

Expect: 500-700 targets per

cluster (~6000 targets)

~860 X-ray AGN >50 within ~2x r_{500,} (15 so far)

Matched by magnitude and cluster centric distance for V<23

2700 seconds on target

Merger Rates

- Rate of Mergers
 Scales inversely with
 the Mass of the most
 massive Clusters
- $\sigma^3 \propto M^{-1}$
- (e.g., Mamon 1992)
- Though the X-ray
 AGN are quenched
 in clusters, the ones
 that are active are
 consistent with being
 triggered by merging
 of galaxies.

