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Example: formation of merging pairs of neutron stars



Common envelope interactions transform binary systems
envelope is ejected 
and orbit stabilizes

Evolution to contact

Drag on surrounding  
gas tightens the orbit

envelope is retained 
and binary merges

common envelope outcomes: 
tightened binary or merger
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• What are the initial conditions of CE episodes?  

• How is energy/momentum transfer between 
embedded object and the gas mediated? 

• What is the timescale of envelope ejection? 

• How do initial binary parameters map to outcomes? 

But, there are some general questions:



Two strategies for progress 

• Gas dynamics of common envelope:
goal: isolate and understand aspects of the physics of CE flows 

• Catching common envelope in action:
goal: model-to-data comparison to directly constrain long-uncertain 
theoretical models of CE processes



(Edgar 2004)

Hoyle & Lyttleton (1939),
Bondi & Hoyle (1944)

Ra ⇠ 2GM

v21

Gas dynamics of common envelope

Flow is gravitationally focussed 
toward the embedded star

…interacts with a “column” of gas with 

Area = ⇡R2
a

In the frame of the orbiting star:
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1. INTRODUCTION

There is direct astronomical evidence for the existence of diffuse clouds of matter
in interstellar space. Any section of the Milky Way containing a large number of
stars usually shows regions in which no stars appear, and the extent of these
patches is often large compared with the average apparent distance between the
stars themselves (see, for example, Russell, Dugan, and Stewart (2), p. 820).
The existence of the so-called cosmical cloud in interstellar space, sharing in the
general motion of the galaxy, is now well established, and observational investiga-
tion shows that the obscuration referred to above occurs also on a galactic scale.
Thus the diffuse obscuring clouds appear as irregularities in the general cosmical
cloud. The dimensions of such regions are comparable with the distances between
the stars, and may be very much greater. In some instances the presence of such
clouds is revealed by their illumination by a star or stars lying in, or near them,
so that the matter then can be directly observed. In shape the clouds are very
irregular; some appear like long dark lanes, while other tracts are devoid of
any particular form.

Since the existence of such clouds appears to be general in the galaxy it is
of importance to consider the effects that could be produced if a star passed
through one of them. The frequency of such occurrences for a particular star would
clearly depend upon the distribution of the clouds in space, and the intervals
between these events would accordingly be irregular. But it is to be observed
at once that the intervals would in general be of the order of the periods of time
occurring in galactic problems, that is, of the order of 107 or 108 years, the average
period of revolution of a star in the galaxy being about 2-5 x 108 years.

The density of an obscuring cloud and the velocity that a star would have
relative to it are known as far as orders of magnitude are concerned from
astronomical considerations, and it is shown in the sequel that these clouds may
have a considerable effect upon a star's radiation during the time of passage
of the star through the cloud. The importance to terrestrial climate of such an
effect upon the sun is at once evident, and it is to this aspect of the process that
the present paper is directed, though it would seem that encounters between stars
and the diffuse clouds may also have some bearing on questions of a more general
astronomical nature. If any appreciable change in the sun's radiative power
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by the sun's gravitational attraction, and the action of collisions in this con-
densation can be shown to give the sun an effective capture radius much larger
than its ordinary radius.

(a) Calculation of the capture radius of the sun
Imagine the cloud to be streaming past the sun, from right to left in the figure,

and let the velocity of any element of it relative to the sun when at great distances
be v. Consider the part of the cloud that if undeflected by the sun would pass
within a distance o~ or less of its centre. It is clear that collisions will occur to
the left of the sun because the attraction of the latter will produce two opposing
streams of particles and the effect of such collisions is to destroy the angular

Fig. 1.

momentum of the particles about the sun. If after collision the surviving radial
component of the velocity is insufficient to enable the particles to escape, such
particles will eventually be swept into the sun. Suppose, for example, that an
element of volume of the cloud A whose initial angular momentum is vo~ loses
this momentum through its constituent particles suffering collisions at C; then
the effective radius a can be calculated such that the velocity radially at C is
less than the escape velocity at this distance. The element describes a hyperbola
whose equation, with the usual notation, may be written

- = 1 + e cos 6.r
The direction parallel to the initial asymptote corresponds to

ecos0+l = 0,
26-2

How the sun gravitationally captures 
interstellar gas and how this might 
affect solar system evolution
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Then simulation results can be 
applied to any stellar pair: 
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Mach number: 

Express typical flow properties in terms of the 
dimensionless scales of Hoyle-Lyttleton theory
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✏⇢ = Ra/H⇢Density gradient:



Flow parameters for common envelope inspiral

Relations between flow parameters:

~g

The stellar envelope is in HSE with the same 
gravity that drives the orbital motion!



Flow parameters for common envelope inspiral

Relations between flow parameters:

~g

The stellar envelope is in HSE with the same 
gravity that drives the orbital motion!

✏⇢ =
2q

(1 + q)2
M2f�4

k

✓
�s

�

◆�1

Density gradient

Mass ratio

Mach Num

relative velocity:  
fraction of Keplerian

Envelope structure vs 
gas compressibility
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 inject flow with polytropic 
(HSE) profile 
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Common Envelope Wind Tunnel � = �s = 5/3



Two strategies for progress 

• Gas dynamics of common envelope:
goal: isolate and understand aspects of the physics of CE flows 

• Catching common envelope in action:
goal: model-to-data comparison to directly constrain long-uncertain 
theoretical models of CE processes
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observable transients: 

V1309 Sco

Orb. period 
decreases

Bright flare

Luminous Red Novae:
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Luminous Red Novae?

(Kasliwal 2011)
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M31 LRN 2015

Outburst in Andromeda galaxy in Jan 2015

(Kurtenkov+ 2015)

Employing the conversions from Sirianni et al. (2005) and
using the distance and reddening toward M31LRN 2015
in M31 (see Section 2) we estimate the absolute magnitude
of the progenitor candidate to be = − ±M 1.50 0.23V , =MI
− ±2.55 0.13 with ( − = ±V I ) 1.05 0.150 , consistent with a
red giant.

The Local Group Galaxies Survey (LGGS; Massey
et al. 2006) data reveal a nearby source, J004208.06
+405501.7, at = ±V 22.33 0.09, ( − = ±B V ) 0.75 0.17,
( − = ±V R) 0.62 0.10, and ( − = ±R I ) 0.65 0.04. While it
would first appear that the progenitor is brighter in the Massey
et al. (2006) catalog, an inspection of the images reveals this
source is in fact a blend of several of the stars visible in
Figure 3, including the two brightest. A source is clearly visible
at the position of M31LRN 2015 in the LGGS narrowband Hα
data (taken 2002 September 11), but nothing is seen at this
position in either the [O III] or [S II] data. To remove any
contribution from continuum emission in these narrowband
images we subtracted the scaled LGGS R-band image from
both the Hα and [S II] images, and the scaled V-band image
from the [O III] image. The scaling was calculated by
determining a linear fit between the broadband and narrowband
data using SExtractor (v2.19.5; Bertin & Arnouts 1996)
photometry of ∼20,000 objects in each image. A clear source
was seen in the continuum-subtracted Hα data, indicating a
strong Hα excess in the spectrum of the pre-outburst M31LRN
2015. Azimlu et al. (2011), who also used the LGGS data, list
it as an H II region (#1527 in their paper), with an estimated
luminosity of 6 × 1034 erg s−1. If indeed this is a star-forming
H II region, the luminosity implies a star formation rate of
∼5 × 10−7Me yr−1 (using the conversion from Kennicutt 1998).
A SN remnant origin for this emission seems unlikely, due to
the lack of [S II] emission and the small size, which implies an
age of less than a few hundred years. If this is not an H II

region, the most likely source of the Hα emission is the
progenitor system itself, either directly from the progenitor or a
companion, or from a period of mass loss.

5. DISCUSSION

M31LRN 2015 is a luminous, red transient in M31,
characterized by weakening Hα emission on an increasingly
red continuum, with a number of absorption lines emerging
after peak, including Na I D and Ba II, and TiO bands appearing
at later times. Considering the spectroscopic and photometric
evolution of the outburst we conclude that this object is a LRN
in M31, a conclusion that Kurtenkov et al. (2015b) reached
independently from their data. We now compare the properties
of this system to those of other proposed LRNe and ILRTs.
The light curves of both LRNe and ILRTs are characterized

by slow evolution (compared to most novae) and significant
reddening as they fade. The light curves of LRNe V1309 Sco
(Mason et al. 2010) and V838 Mon (Munari et al. 2002b)
show the brightness quickly falling in the bluer filters, but
plateauing in the red filters. The light curve of V4332 Sagittarii
(another LRN; Martini et al. 1999) also shows this object to be
reddening about two weeks after discovery, although there is
no color information for the earlier periods. The only LRN that
shows clear evidence of a significant multiple-peak light curve
structure is V838 Mon. ILRTs are more luminous at peak than
the LRNe discussed above and they also show different
photometric evolution. The first ILRT discovered, M85
OT2006-1, shows a long plateau phase (∼70 days), with
relatively little color evolution until later times (Kulkarni
et al. 2007). ILRT PTF 10fqs showed a plateau phase
(∼40 days), before rapidly reddening (Kasliwal et al. 2011),
and NGC 300 OT2008 also shows no major optical color
evolution until later times (Bond et al. 2009). Our observations
show that M31LRN 2015 clearly resembles LRNe, rather than

Figure 3. F814W HST (negative) image of the location of M31LRN 2015 taken 2004 August 16.5. The 1σ and 3σ errors on the calculated position of the quiescent
system are represented by green circles. The red crosses represent the positions of the nearby sources in the HST data.

4

The Astrophysical Journal Letters, 805:L18 (6pp), 2015 June 1 Williams et al.

Pre-outburst source in 
HST imaging 

(Williams+ 2015)
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after peak, including Na I D and Ba II, and TiO bands appearing
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reddening about two weeks after discovery, although there is
no color information for the earlier periods. The only LRN that
shows clear evidence of a significant multiple-peak light curve
structure is V838 Mon. ILRTs are more luminous at peak than
the LRNe discussed above and they also show different
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sub-giant primary star  
growing to point of interaction

M1 ⇡ 4� 5M�; R1 ⇡ 30R�

�t
peak

⇠ t
orb

transient rise time similar 
 to orbital period

merger transient:

Erad ⇠ 1046 erg

vej ⇠ 400 km s�1

�tpeak ⇠ 8 d

�mej ⇠ 10�2M�

small fraction of system mass 
 ejected dynamically 

fast ejecta relative to escape velocity
vej > vesc
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What can we learn about common envelope?

• Stars sometimes swallow other stars: this can make 
new (tighter) binaries, or cause a complete merger. 

• We still have NO IDEA how the details work!! 

• Catching these events in action constrains the 
properties of the onset of common envelope. 

• As we start to discover binaries merging through the 
emission of gravitational waves, it’s extremely 
important to understand the assembly of these close 
systems through common envelope phases.  


