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Common envelope interactions transform binary systems

Example: formation of merging pairs of neutron stars
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Common envelope interactions transform binary systems

envelope is ejected
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common envelope outcomes:
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Many open questions...

Challenging problem for “kitchen sink”
numerical approach because of the huge
range of relevant spatial and temporal scales.
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But, there are some general questions:

What are the initial conditions of CE episodes?

- How is energy/momentum transfer between
embedded object and the gas mediated?

What is the timescale of envelope gjection?

- How do initial binary parameters map to outcomes?



Two strategies for progress

Gas dynamics of common envelope:
goal: isolate and understand aspects of the physics of CE flows

Catching common envelope in action:
goal: model-to-data comparison to directly constrain long-uncertain
theoretical models of CE processes



Gas dynamics of common envelope

In the frame of the orbiting star:

Hoyle & Lyttleton (1939),
Bondi & Hoyle (1944)

Flow is gravitationally focussed
toward the embedded star

R

(Edgar 2004)

...Interacts with a “column” of gas with

Area = TR




Gas dynamics of common envelope

THE EFFECT OF INTERSTELLAR MATTER ON
CLIMATIC VARIATION

By F. HOYLE axp R. A. LYTTLETON
Recetved 19 April 1939

1. INTRODUCTION

There is direct astronomical evidence for the existence of diffuse clouds of matter
in interstellar space. Any section of the Milky Way containing a large number of

within a distance o or less of its centre. It is clear that collisions will occur to
the left of the sun because the attraction of the latter will produce two opposing
streams of particles and the effect of such collisions is to destroy the angular

c/,\s How the sun gravitationally captures

~ interstellar gas and how this might
affect solar system evolution

Fig. 1.

momentum of the particles about the sun. If after collision the surviving radial
component of the velocity is insufficient to enable the particles to escape, such
particles will eventually be swept into the sun. Suppose, for example, that an



Gas dynamics of common envelope

Express typical flow properties in terms of the
dimensionless scales of Hoyle-Lyttleton theory

Then simulation results can be
applied to any stellar pair:

Length: R, = ZGM/UQ

Time: Ra/v

Mach number: M = U/Cs




Gas dynamics of common envelope

Express typical flow properties in terms of the
dimensionless scales of Hoyle-Lyttleton theory

Then simulation results can be
applied to any stellar pair:

Length: R, = 2GM/U2

Time: Ra/”U
Mach number: M = U/Cs

Density gradient: €, = Ra/Hp




Flow parameters for common envelope inspiral

Relations between flow parameters:

The stellar envelope is in HSE with the same
gravity that drives the orbital motion!



Flow parameters for common envelope inspiral

Relations between flow parameters:

The stellar envelope is in HSE with the same
gravity that drives the orbital motion!

Envelope structure vs

Density gradient gas compressibility

relative velocity:
fraction of Keplerian
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Common Envelope Wind Tunnel

3D (AMR) calculation in FLASH
Cartesian geometry: “unwrapped” star
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Common Envelope Wind Tunnel vy=Is=5/3
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Two strategies for progress

Catching common envelope in action:
goal: model-to-data comparison to directly constrain long-uncertain
theoretical models of CE processes



Catching common envelope in action

Another way to make progress in this field is through direct comparison to
observable transients:
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Another way to make progress in this field is through direct comparison to
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Luminous Red Novae?
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Catching common envelope in action (M31 LRN2015)
M31 LRN 2015

MASTER OT J004207.99+405501.1 = M31N 2015-01a

(Kurtenkov+72015) - * _ 2014-09*15

Outburst in Andromeda galaxy in Jan 2015



Catching common envelope in action (M31 LRN2015)
M31 LRN 2015

MASTER OT J004207.99+405501.1 = M31N 2015-01a

(Kurtenkov+72015) - * _ 2014-09*15

Outburst in Andromeda galaxy in Jan 2015



Catching common envelope in action (M31 LRN2015)
M31 LRN 2015
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Catching common envelope in action (M31 LRN2015)
M31 LRN 2015

MASTER OT J004207.99+405501.1 = M31N 2015-01a

(Williamggt 2015) E—|

Pre-outburst source in
HST imaging

Binary System

(Kurtenkov+72015) - * _ 2014-09*15

Outburst in Andromeda galaxy in Jan 2015 Transient Outburst



Taken together: a binary merger outburst
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Taken together: a binary merger outburst

NS ) sub-giant primary star merger transient:
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What can we learn about common envelope?

. . AR 2t i
Stars sometimes swallow other stars: this can make R,
new (tighter) binaries, or cause a complete merger. I
_lt

We still have NO IDEA how the details work!!
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What can we learn about common envelope?

Stars sometimes swallow other stars: this can make R,
new (tighter) binaries, or cause a complete merger. L e
ol .

We still have NO IDEA how the details work!!

Catching these events in action constrains the
properties of the onset of common envelope.

As we start to discover binaries merging through the
emission of gravitational waves, it's extremely
important to understand the assembly of these close
systems through common envelope phases.
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