

EM counterparts from long-lived BNS merger remnants

Daniel M. Siegel

Center for Theoretical Physics & Columbia Astrophysics Laboratory
Columbia University

Einstein Fellows Symposium, Harvard-Smithsonian Center for Astrophysics, Oct 19, 2016

EM counterparts to NS mergers

Metzger & Berger 2012

- Short gamma-ray bursts (SGRBs)
 - "Standard" afterglows:
 - X-ray
 - UV/optical
 - radio

Berger 2014, Kumar & Zhang 2015

- "Non-standard" X-ray afterglows: (revealed by Swift)
 - Extended Emission
 - X-ray plateaus
 - X-ray flares

Rowlinson+ 2013, Gompertz+ 2013, 2014, Lue+ 2015

- Interaction of dynamical ejecta with ISM (radio)

 Hotokezaka & Piran 2015
- radioactively powered kilonova/macronova

Li & Paczynski 1998, Rosswog 2005, Metzger+ 2010, Barnes & Kasen 2013, Piran+ 2013, Tanaka & Hotokezaka 2013

What is a promising EM counterpart?

	bright	isotropic	long lasting	high fraction	smoking gun for BNS
SGRBs		X	\times	X	\times
standard afterglows	X	X		X	
BNS post-merger transients (this talk)	• • •	• • •	• • •	• • •	
dynamical ejecta, ISM	X				
kilonovae					

Product of BNS mergers

- observationally: ${
 m M_{TOV}}\gtrsim 2\,{
 m M}_{\odot}$ Demorest+ 2010, Antoniadis+ 2013
- progenitor masses peak around $1.3-1.4~M_{\odot}$
 - ightharpoonup remnant NS mass typically $pprox 2.3\,{
 m M}_{\odot}-2.4\,{
 m M}_{\odot}$ Belczynski+ 2008
- supramassive to hypermassive limit at $pprox 1.2\,\mathrm{M_{TOV}} \gtrsim 2.4\,\mathrm{M_{\odot}}$ Lasota+ 1996
 - -> the most likely outcome should be a long-lived (supramassive) NS

Post-merger evolution

General Phenomenology for BNS mergers leading to a long-lived (>100ms) remnant NS:

Phase I (baryonic wind phase, ~Is):

- hot, differentially rotating NS
- baryon pollution due to dynamical ejecta, neutrino and magnetically driven winds

Phase II (Pulsar 'ignition' and pulsar wind shock ~sec-min):

- cold, uniformly rotating NS
- baryon pollution suppressed → spin-down emission, pulsar wind inflates nebula, drives shock through ejecta

Phase III (Pulsar wind nebula phase ~min-days):

- swept-up material provides cavity for a pulsar wind nebula (PWN) in analogy to CCSNe
- NS may collapse to a BH at any time
- EM emission: reprocessed spin-down energy
 - → model predicts broad-band spectrum from radio to gamma rays

Outflows from BNS merger remnants

Dessart+ 2009

Siegel+ 2014

Fernández & Metzger 2013, Just+ 2015

neutrino-driven wind (from hot remnant NS) (~ms-Is)

$$\dot{M}_{\rm in} \sim (10^{-4} - 10^{-3}) \rm M_{\odot} s^{-1}$$

magnetically driven wind (from remnant NS)

(~ms-ls)

$$\dot{M}_{\rm in} \sim (10^{-3} - 10^{-2}) \rm M_{\odot} s^{-1}$$

delayed outflows (from accretion disks)

(~|s)

$$M_{\rm tot} \lesssim 10^{-3} - 10^{-2} \rm M_{\odot}$$

Post-merger evolution

General Phenomenology for BNS mergers leading to a long-lived (>100ms) remnant NS:

Phase I (baryonic wind phase, ~Is):

- hot, differentially rotating NS
- baryon pollution due to dynamical ejecta, neutrino and magnetically driven winds

Phase II (Pulsar 'ignition' and pulsar wind shock ~sec-min):

- cold, uniformly rotating NS
- baryon pollution suppressed → spin-down emission, pulsar wind inflates nebula, drives shock through ejecta

Phase III (Pulsar wind nebula phase ~min-days):

- swept-up material provides cavity for a pulsar wind nebula (PWN) in analogy to CCSNe
- NS may collapse to a BH at any time
- EM emission: reprocessed spin-down energy
 - → model predicts broad-band spectrum from radio to gamma rays

Post-merger evolution: evolution equations

set of coupled ODEs

Phase I:
$$\frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} = v_{\mathrm{w}}(R_{\mathrm{ej}}(t), t)$$
$$\frac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} = L_{\mathrm{EM}}(t) + \frac{\mathrm{d}E_{\mathrm{th,NS}}}{\mathrm{d}t} - L_{\mathrm{rad}}(t)$$

$$\frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} = v_{\mathrm{w}}(R_{\mathrm{ej}}(t), t)$$

$$\frac{\mathrm{d}R_{\mathrm{sh}}}{\mathrm{d}t} = v_{\mathrm{sh}}(t)$$

$$\frac{\mathrm{d}R_{\mathrm{n}}}{\mathrm{d}t} = \frac{\mathrm{d}R_{\mathrm{sh}}}{\mathrm{d}t} - \frac{\mathrm{d}\Delta_{\mathrm{sh}}}{\mathrm{d}t}$$

$$\frac{\mathrm{d}E_{\mathrm{th,sh}}}{\mathrm{d}t} = \frac{\mathrm{d}E_{\mathrm{sh}}}{\mathrm{d}t} + \frac{\mathrm{d}E_{\mathrm{th,vol}}}{\mathrm{d}t} + \frac{\mathrm{d}E_{\mathrm{PWN}}}{\mathrm{d}t} - L_{\mathrm{rad,in}}(t)$$

$$\frac{\mathrm{d}E_{\mathrm{th,ush}}}{\mathrm{d}t} = -\frac{\mathrm{d}E_{\mathrm{th,vol}}}{\mathrm{d}t} - L_{\mathrm{rad}}(t)$$

$$\frac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} = \frac{\mathrm{d}E_{\mathrm{th,sh}}}{\mathrm{d}t} + \frac{\mathrm{d}E_{\mathrm{th,ush}}}{\mathrm{d}t}$$

$$\frac{dE_{\text{nth}}}{dt} = -\frac{E_{\text{nth}}}{R_{\text{n}}} \frac{dR_{\text{n}}}{dt} - \frac{dE_{\text{PWN}}}{dt} + L_{\text{rad,in}}(t) + \eta_{\text{TS}}[L_{\text{sd}}(t) + L_{\text{rad,pul}}(t)]$$

$$\frac{\mathrm{d}E_B}{\mathrm{d}t} = \eta_{B_n} [L_{\mathrm{sd}}(t) + L_{\mathrm{rad,pul}}(t)]$$

Phase III:

$$\frac{\mathrm{d}v_{\mathrm{ej}}}{\mathrm{d}t} = a_{\mathrm{ej}}(t)$$

$$\frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} = v_{\mathrm{ej}}(t) + \frac{1}{2}a_{\mathrm{ej}}(t)\mathrm{d}t$$

$$\frac{\mathrm{d}R_{\mathrm{n}}}{\mathrm{d}t} = \frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t}$$

$$\frac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} = [1 - f_{\mathrm{ej}}(t)] \frac{\mathrm{d}E_{\mathrm{PWN}}}{\mathrm{d}t} - L_{\mathrm{rad}}(t) - L_{\mathrm{rad,in}}(t)$$

$$\frac{\mathrm{d}E_{B}}{\mathrm{d}t} = \eta_{B_{\mathrm{n}}}[L_{\mathrm{sd}}(t) + L_{\mathrm{rad,pul}}(t)]$$

Post-merger EM emission

Fig.: Reconstructed X-ray lightcurves (0.3-10 keV)

- hot ejecta (continuous heating by nebula): emission is in the X-rays
- delayed onset of strong X-ray radiation ~I-I0s after merger (high optical depth at early times)
- bright, isotropic, long-lasting X-ray signal peaking at $\sim 10^2$ - 10^4 s after merger (L $\sim 10^{46}$ - 10^{48} erg s⁻¹)

Post-merger EM emission

Fig.: X-ray light curves and effective temperature evolution (example)

- at timescale of peak brightness, predominantly thermal emission in the X-rays (continuous heating by the nebula)
- heating by r-process nucleosynthesis typically subdominant up to $t \sim Id$
- degree of ionization of ejecta matter important: if low, peak might be shifted toward lower frequencies

Post-merger EM emission: EM counterpart to GWs

Fig.: Reconstructed X-ray lightcurves (0.3-10 keV)

- bright, isotropic, long-lasting X-ray signal peaking at $\sim 10^2$ 10^4 s after merger (L $\sim 10^{46}$ 10^{48} erg s⁻¹)
 - → smoking gun for BNS merger event → timescale well suited for EM follow up of GW event
 - X-ray signal represents ideal EM counterpart

What is a promising EM counterpart?

	bright	isotropic	long lasting	high fraction	smoking gun for BNS
SGRBs		\times	\times	X	
standard afterglows	X	X		X	
BNS post-merger X-ray transients (this talk)					
dynamical ejecta, ISM	X				
kilonovae					

according to the model:

BNS post-merger X-ray transients represent ideal EM counterpart

Conclusions

- majority of BNS mergers should lead to long-lived NSs
- proposed post-merger phenomenology and detailed numerical model for those events
 - general model to compute broad band EM emission (radio to gamma rays)
 - → bridges the gap between numerical relativity simulations and the observational timescales of EM transients
 - reveals strong thermal transient (peaking in the X-rays, but also UV and optical counterparts at later times), promising counterpart for GW astronomy
 - → together with NS component masses from GW signal can tightly constrain EOS (using supramassive NS assumption)

 Ciolfi & Siegel (2015), ProcSci (SWIFT 10)108
 - natural explanation for combined phenomenology of Swift X-ray lightcurves (not this talk), and late-time kilonova emission
 - makes very specific predictions that can be tested observationally

see also "time-reversal" scenario Ciolfi & Siegel (2015), ApJL 798, L36

Siegel D.M. & Ciolfi R. (2016a), *ApJ* **819**, 14 Siegel D.M. & Ciolfi R. (2016b), *ApJ* **819**, 15