Moving mesh magnetohydrodynamics: the
role of magneto-turbulence in star formation

Philip Mocz

Princeton University

Einstein Symposium
Oct 12, 2017




Acknowledgements

. ,1 .1” / ,; 1
Lars Hernquist Blakesley Burkhart Chat Hull Chris McKee
(Harvard) (Harvard) (NAQJ Chile) (Berkeley)

@ NASA Einstein Fellowship Program

2/25



The last...?

TOM CRUMSHE




The New NASA Hubble Fellowship Program
NASA HUBBI.’

FELLOWSHIP PROGRANL

How does the Universe work? — Einstein Fellows
How did we get here? - Hubble Fellows
Are we alone? - Sagan Fellows

4]25



How does the Universe work?

A hierarchy of physical processes...
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How does the Universe work?

» 0*h order: gravity often is most important
» Sometimes gravity wins on even the smallest scales...

» 15t order: is often fluid dynamics
> StUdy of fundamental phySical PIOCESSES (How does the Universe work?)
» structure formation
» turbulence
» different regimes where qualitative behavior changes
;. . sl TN s
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Overview
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Star formation background

» competition between turbulence,
self-gravity & B-field

» basic theory predicts cores
collapse and form hourglass
shaped magnetic fields

» sub- or super-Alfvénic
turbulence?

NGC 1333
IRASALA

(Girart, Rao, Marrone 2006)
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Origin of magnetic field structure

» inherit strong field from large-scale medium
» amplify weak field via turbulence

(Stone+1998)

» magnetic topology problemMeKee+1993): how does the
magnetic field topology evolve as the ISM forms
molecular clouds and cores contract to form stars?
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How does contraction of cores happen?
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Is core-formation self-similar? (Li+2015)

— y=.41x- .68
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» self-similar scaling 100 — 0.1 pc (SMA)
» dynamically important B-fields
» anisotropic contraction
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Or not! Zeeman obs. of B-field in clouds
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(Crutcher+2012)

» B p%7, weak-field preferred
» Zeeman measurements are the gold standard for B-field
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What about smaller scales? (Hull, PM+2016)

CARMA (0.1 pc) = ALMA (0.01 pc)
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» new Ser-emb 8 Type 0 protostar ALMA observation
» pinches, filaments, clumps, chaotic!
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What can simulations teach us?: Setup

-17

g

«=<  » turbulent, magnetized,
2 self-gravitating ISM cloud
(Lo ~ 5 pc )

» isothermal

> Mg = tms =10

Cs

> i = 502 (L/2)/(3GMy) = 1/2
> My = (|v])/(|V/B?/4mpl) =

5
03 0.35,1.2,3.5,35
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Simulations of star formation in turbulent ISM

Cloud (optical |5 :
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B-p scaling
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Density-averaged radial profiles
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Conclusions - I
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B =1 @collapse
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» anisotropic

» hourglass morphology
» self-similar

» 13 = 1
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Conclusions - II

» Myu ~ 1 a good fiducial value for star formation
» Star formation may occur in both M, > 1and M, <1
environments, very different consequences!

» turbulent vs. hourglass morphology
» different central magnetic field strengths
» higher B leads to more massive stars, less fragmentation
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B-field as function of scale

» despite core properties
being similar, mean-field
direction as function of
length-scale strongly
depends on the mean-field
Map

. " future ALMA observations
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Turbulent reconnection diffusion
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turbulent-reconnection seen in
our simulations
» Mass-to-flux (ue ) in cores
evolves during collapse as:
> ppo =80 —12.7

Turbulent model

A > Ue0 = 8 — 16.5
) . > =2.7— 121
e — I'I“I),O
i PR > lpo—=08—58
blow up ’

(Lazarian & Vishniac, 1999)
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Density- vs Volume- averaged B-fields
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o » Crutcher+ (2012) Zeeman
"~ pdi(logy(p) measurements recover
PN density-averaged B-fields

“ » B-p scaling can be steeper
: with density- as opposed to

logyo(p) [g em ™) volume-average

» Li, McKee, Klein (2015) find
mass-to-flux is also affected
by type of averaging

» demonstrates the importance
of modeling all observational
effects for interpretation of
data
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(Li, McKee, Klein, 2015)



Self-gravitating turbulent box properties
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Histogram of Relative Orientations (soler+2o1)

B-field & velocities tend to align, especially at low density
V - B =0, shocks, prevent perfect alignment

B-fields aligned with density gradient at high densities
transition occurs at critical density perit (chen kingLizo16)
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Large-scale EE/BB modes

» Planck dust polarization maps of interstellar turbulence
show EE/BB: 2 (Caldwell, Hirata, Kamionkowski 2016)

» analytic theory predicts EE/BB=1 for turbulence

» My simulations confirm analytic theory EE/BB=1 for
super-Alfvenic turbulence

» EE/BB=2 might indicate stirring-scale or strong B-fields
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