
1

The Magnetothermal Instability and

its Application to Clusters of

Galaxies

Ian Parrish

Advisor:  James Stone

Dept. of Astrophysical Sciences

Princeton University/ UC Berkeley

October 10, 2007



2

Hydra A Cluster (Chandra)

Collisionless Transport

T ~ 4.5 keV   n ~ 10-3-10-4

Motivation

>>Vmfp R1.0~ >>Vmfp R1.0~

>>Vmfp R05.0~

4x106 M

Black

Hole

Sgr A*

T ~ 1 keV, n ~ 10 cm-3

Rs ~ 1012 cm

Smfp R>>cm10~
17

50 kpc

Motivating example suggested by E. Quataert
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Talk Outline

•Idea:

Stability, Instability, and “Backward” Transport in Stratified
Fluids, Steve Balbus, 2000.

Physics of the Magnetothermal Instability (MTI).

•Algorithm:

Athena: State of the art, massively parallel MHD solver.

Anisotropic thermal conduction module.

•Verification and Exploration

Verification of linear growth rates.

Exploration of nonlinear consequences.

•Application to Galaxy Clusters
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Convective Stability in a

Gravitational Field

•Clasically: Schwarzschild Criterion

•Long MFP: Balbus Criterion

New Stability Criterion!

Idea: Magnetothermal Instability

Qualitative Mechanism
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Magnetic Field Lines

Anisotropic heat flux given

by Braginskii conductivity.
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Algorithm: MHD with Athena

Athena: Higher order

Godunov Scheme

•Constrained Transport for

preserving divergence free.

•Unsplit CTU integrator
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Algorithm: Heat Conduction
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B

Verification

•Gaussian Diffusion: 2nd order accurate.

•Circular Field Lines.

Implemented through sub-cycling

diffusion routine.
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Algorithm: Performance
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Dispersion Relation
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Linear Regime
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Linear Regime: Verification
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Exploration: 3D Nonlinear Behavior

•Subsonic convective turbulence,

Mach ~ 1.5 x 10-3.

•Magnetic dynamo leads to

equipartition with kinetic energy.

•Efficient heat conduction.

Steady state heat flux is 1/3 to

1/2 of Spitzer value.

Magnetic Energy Density = B2/2

g
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•Subsonic convective

turbulence, Mach ~ 1.5 x 10-3.

•Magnetic dynamo leads to

equipartition with kinetic

energy.

•Efficient heat conduction.

Steady state heat flux is 1/3 to

1/2 of Spitzer value.

RMS Mach

Exploration: 3D Nonlinear Behavior
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MTI-Unstable

Region

Exploration: 3D Nonlinear Behavior

•Subsonic convective turbulence,

Mach ~ 1.5 x 10-3.

•Magnetic dynamo leads to

equipartition with kinetic energy.

•Efficient heat conduction.

Steady state heat flux is 1/3 to

1/2 of Spitzer value.

•Temperature profile can be

suppressed significantly.
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Expectations from Structure Formation

Hydro Simulation:

CDM Cosmology, Eulerian

Expect: steep temperature

profile

Rv ~ 1-3 Mpc

M ~ 1014 – 1015 solar masses
(84% dark matter, 13% ICM, 3%
stars)

T ~ 1-15 keV

LX ~ 1043 – 1046 erg/s

B ~ 1.0 G

Anisotropic Thermal
Conduction DominatesLoken, Norman, et al (2002)

Application: Clusters of Galaxies
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Application: Clusters of Galaxies

Plot from DeGrandi and Molendi 2002

ICM unstable to the MTI on scales greater than
2/12/1

crit

2000

keV 5
 kpc 6.4=

T

Observational Data
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Simulation: Clusters of Galaxies

Temperature Profile becomes Isothermal
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Simulation: Clusters of Galaxies

Magnetic Dynamo:

B2 amplified by ~ 60

Vigorous

Convection:

Mean Mach: ~ 0.1

Peak Mach: > 0.6
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Summary

•Physics of the MTI.

•Verification and validation of MHD
+ anisotropic thermal conduction.

•Nonlinear behavior of the MTI.

•Application to the thermal structure
of clusters of galaxies.

Future Work

•Galaxy cluster heating/cooling

mechanisms: jets, bubbles,

cosmic rays, etc.

•Application to neutron stars.

•Mergers of galaxy clusters

with dark matter.

•DOE CSGF Fellowship, Chandra Fellowship

•Many calculations performed on Princeton’s Orangena Supercomputer

Acknowledgements
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Questions?
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Adiabatic Single Mode Example
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Single Mode Evolution

2

1.04, 1.09
Tk

N N

Magnetic

Energy

Density

Kinetic

Energy

Density

Single Mode Perturbation
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Single Mode

Evolution

•Saturated State should be new isothermal temperature profile

•Analogous to MRI Saturated State where angular velocity profile

is flat.
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Dependence on Magnetic Field

Instability Criterion:
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Conducting Boundaries

Temperature Fluctuations
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Models with Convectively Stable Layers

•Heat flux primarily due to Advective component.

•Very efficient total heat flow

MTI Stable

MTI Stable

MTI Unstable
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Future Work & Applications
Full 3-D Calculations

•Potential for a dynamo in three-dimensions (early evidence)

•Convection is intrinsically 3D

•Application-Specific Simulations

•Clusters of Galaxies

•Atmospheres of Neutron Stars

Acknowledgements:  Aristotle Socrates, Prateek Sharma, Steve Balbus,

Ben Chandran, Elliot Quataert, Nadia Zakamska, Greg Hammett

•Funding: Department of Energy

Computational Science Graduate

Fellowship (CSGF)
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SUPPLEMENTARY

MATERIAL
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Analogy with MRI
Magneto-Rotational Magneto-Thermal
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•Keplerian Profile

•Conserved Quantity:

  Angular Momentum

•Free Energy Source:

  Angular Velocity Gradient

•Weak Field Required

•Convectively Stable Profile

•Conserved Quantity:

  Entropy

•Free Energy Source:

  Temperature Gradient

•Weak Field Required

Unstable When: Unstable When:
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Heat Conduction Algorithm
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Heat Flux with Stable Layers
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Outline & Motivation

Goal: Numerical simulation of

plasma physics with MHD in

astrophysics.

•Verification of algorithms

•Application to Astrophysical

Problems

Outline:

•Physics of the Magnetothermal

Instability (MTI)

•Verification of Growth Rates

•Nonlinear Consequences

•Application to Galaxy Clusters

Solar Corona

Around 2 R :

n ~ 3 x 1015, T ~ few 106 K

mfp > distance from the sun
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Cooling Flows?

•Problem: Cooling time at

center of cluster much faster

than age of cluster

•Theory A: Cooling flow drops

out of obs. To colder phase

•Observation: No cool mass

observed!

•Theory B: Another source of heat…from a central AGN,

from cosmic rays, Compton heating, thermal conduction

(Graphic from Peterson & Fabian, astro-ph/0512549)



32

Thermal Conduction
•Rechester & Rosenbluth/Chandran &

Cowley:  Effective conductivity for chaotic

field lines…Spitzer/100 (too slow)

•Narayan & Medvedev:  Consider multiple

correlation lengths…Spitzer/a few (fast

enough?)

•Zakamska & Narayan:  Sometimes it

works.

•ZN:  AGN heating models produce thermal instability!

•Chandran: Generalization of MTI to include cosmic ray pressure
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Clusters: Case for Simulation
•Difficult to calculate effective conductivity in

tangled field line structure analytically

•Heat transport requires convective mixing

length model
•Convection modifies field structure….feedback

loop

Plan:

•Softened NFW Potential:

•Initial Hydrostatic Equilibrium: Convectively Stable, MTI Unstable

•Magnetic Field:  Smooth Azimuthal/Chaotic

•Resolution: Scales down to 5-10 kpc (the coherence length) within

200 kpc box requires roughly a 5123 domain
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Application II: Neutron Stars
Neutron Star Parameters

•R = 10 km (Manhattan)

•M = 1.4 solar masses

•B = 108 – 1015 G

Properties

•Semi-relativistic

•Semi-degenerate

•In ocean, not fully quasi-

neutral

•In crust, Coulomb Crystal?
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Neutron Star Atmosphere

(from Ventura & Potekhin)

Tout = 5 x 105 K (solid)

Tout = 2 x 106 K (dashed)

Various values of cos

Construct an atmosphere

•EOS: Paczynski, semi-degenerate, semi-relativistic

•Opacity: Thompson scattering (dominant), free-free emission

•Conduction: Degenerate, reduced Debye screening (Schatz, et al)

•Integrate constant-flux atmosphere with shooting method.
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Instability Analysis and Simulation

•Potential for instability near equator where B-field lines are

perpendicular to temperature gradient

•MTI damped:

•Outer parts due to radiative transport

•Inner part due to stronger magnetic field and cross-field collisions

•Check analytically if unstable

•Simulate plane-parallel patch in 3D with Athena

•Estimate heat transport properties, and new saturated T-profile
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Non-Linear Evolution III

•Advective Heat Flux is dominant

•Settling of atmosphere to isothermal equilibrium
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Adiabatic Multimode Evolution

No Net Magnetic Flux leads to decay by Anti-Dynamo Theorem
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Effect of Finite B on Temperature

Profile

Stability Parameter:

2

max

22

A
Vk
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Adiabatic Multimode Example
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Conducting Boundaries

Magnetic Field Lines
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Conducting Boundary

Magnetic

Energy

Density

Kinetic

Energy

Density
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Conducting Boundary

Temperature Profiles
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Extension to 3D

How to get there

• ATHENA is already parallelized for 3D

• Need to parallelize heat conduction algorithm

• Parallel scalability up to 2,048 processors

What can be studied

• Confirm linear and non-linear properties in 2D

• Convection is intrinsically 3D—measure heat
conduction

• Possibility of a dynamo?
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Initial Conditions
Pressure Profile
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•Convectively Stable Atmosphere

•Ideal MHD (ATHENA)

•Anisotropic Heat Conduction (Braginskii)

•BC’s: adiabatic or conducting at y-boundary,

 periodic in x


