| AHELP for CIAO 4.5 Sherpa v1 | dered |
Context: models |
Synopsis
Dereddening function.
Description
This dereddening model uses the analytic formula for the mean extension law described in Cardelli, Clayton, & Mathis 1989, ApJ 345, 245:
A(lambda) = E(B-V) (aR_v+b) = 1.086 tau(lambda)
where tau(lambda) is the wavelength-dependent optical depth,
I(lambda) = I(0) exp[-tau(lambda)] ,
and a and b are computed using wavelength-dependent formulae which we will not reproduce here, for the wavelength range 1000 A - 3.3 microns. The relationship between the color excess and the column density is
E(B-V) = [ N_(Hgal) (10^20 cm^-2) ]/58.0
(Bohlin, Savage, & Drake 1978, ApJ 224, 132). The value of the ratio of total to selective extinction, R_v, is initially set to 3.1, the standard value for the diffuse ISM. The final model form is:
I(lambda) = I(0) exp[-N_(Hgal)(aR_v+b)/58.0/1.086]
This model should only be used as a multiplicative model:
sherpa> set_source(dered.dr*powlaw1d.con1)
sherpa> set_par("con1.gamma",1.2)
sherpa> set_par("con1.ref",2588.6)
sherpa> set_par("con1.ampl",0.1)
sherpa> set_par("dr.rv",3.1,frozen=True)
sherpa> set_par("dr.nhgal",0.03,frozen=True)
This model provided courtesy of Karl Forster.
dered Parameters
| Number | Name | Description |
|---|---|---|
| 1 | rv | total to selective extinction ratio R_v |
| 2 | nhgal | absorbing column density N(H_gal) |
The integration of models in Sherpa is controlled by an integration flag in each model structure. Refer to "ahelp integrate" for information on integrating model components.
Bugs
See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.
See Also
- models
- absorptionedge, absorptiongaussian, absorptionlorentz, absorptionvoigt, accretiondisk, atten, bbody, bbodyfreq, beta1d, beta2d, blackbody, box1d, box2d, bpl1d, bremsstrahlung, brokenpowerlaw, ccm, const1d, const2d, cos, delta1d, delta2d, devaucouleurs2d, edge, emissiongaussian, emissionlorentz, emissionvoigt, erf, erfc, exp, exp10, fm, gauss1d, gauss2d, hubblereynolds, jdpileup, linebroad, list_model_components, list_models, lmc, log, log10, logabsorption, logemission, logparabola, lorentz1d, lorentz2d, models, normbeta1d, normgauss1d, normgauss2d, opticalgaussian, poisson, polynom1d, polynom2d, polynomial, powerlaw, powlaw1d, recombination, scale1d, scale2d, schechter, seaton, sersic2d, sin, sm, smc, sqrt, stephi1d, steplo1d, tablemodel, tan, xgal, xs, xsabsori, xsacisabs, xsapec, xsbapec, xsbbody, xsbbodyrad, xsbexrav, xsbexriv, xsbkn2pow, xsbknpower, xsbmc, xsbremss, xsbvapec, xsbvvapec, xsc6mekl, xsc6pmekl, xsc6pvmkl, xsc6vmekl, xscabs, xscemekl, xscevmkl, xscflow, xscompbb, xscompls, xscompps, xscompst, xscompth, xscomptt, xsconstant, xscplinear, xscutoffpl, xscyclabs, xsdisk, xsdiskbb, xsdiskir, xsdiskline, xsdiskm, xsdisko, xsdiskpbb, xsdiskpn, xsdust, xsedge, xseplogpar, xseqpair, xseqtherm, xsequil, xsexpabs, xsexpdec, xsexpfac, xsezdiskbb, xsgabs, xsgadem, xsgaussian, xsgnei, xsgrad, xsgrbm, xshighecut, xshrefl, xskerrbb, xskerrd, xskerrdisk, xslaor, xslaor2, xslogpar, xslorentz, xsmeka, xsmekal, xsmkcflow, xsnei, xsnotch, xsnpshock, xsnsa, xsnsagrav, xsnsatmos, xsnsmax, xsnteea, xsnthcomp, xsoptxagn, xsoptxagnf, xspcfabs, xspegpwrlw, xspexmon, xspexrav, xspexriv, xsphabs, xsplabs, xsplcabs, xsposm, xspowerlaw, xspshock, xspwab, xsraymond, xsredden, xsredge, xsrefsch, xssedov, xssirf, xssmedge, xsspexpcut, xsspline, xssrcut, xssresc, xssss_ice, xsstep, xsswind1, xstbabs, xstbgrain, xstbvarabs, xsuvred, xsvapec, xsvarabs, xsvbremss, xsvequil, xsvgadem, xsvgnei, xsvmcflow, xsvmeka, xsvmekal, xsvnei, xsvnpshock, xsvphabs, xsvpshock, xsvraymond, xsvsedov, xsvvapec, xswabs, xswndabs, xsxion, xszbbody, xszbremss, xszdust, xszedge, xszgauss, xszhighect, xszigm, xszpcfabs, xszphabs, xszpowerlw, xszredden, xszsmdust, xsztbabs, xszvarabs, xszvfeabs, xszvphabs, xszwabs, xszwndabs, xszxipcf

![[Sherpa Logo]](../imgs/sherpa_logo_navbar.gif)