Chandra X-Ray Observatory
	(CXC)
Skip to the navigation links
Last modified: December 2013

URL: http://cxc.harvard.edu/sherpa/ahelp/xsvnei.html
Jump to: Description · Bugs · See Also


AHELP for CIAO 4.6 Sherpa v1

xsvnei

Context: models

Synopsis

Non-equilibrium ionization collisional plasma model with variable abundances. XSpec model.

Description

Non-equilibrium ionization collisional plasma model. This assumes a constant temperature and single ionization parameter. It provides a characterisation of the spectrum but is not a physical model. The references for this model can be found in the help file for the xsequil model.

This is an additive model component.

xsvnei Parameters

Number Name Description
1 kt plasma temperature in keV
2 h hydrogen density in cm^-3
3-13 (element) abundances for He, C, N, O, Ne, Mg, Si, S, Ca, Fe, Ni with respect to Solar. Abundances are set by the set_xsabund command.
14 tau ionization timescale in units of s/cm^3
15 redshift redshift, z
16 norm 10^-14 / (4 pi (D_A*(1+z))^2) Int n_e n_H dV, where D_A is the angular size distance to the source (cm), n_e is the electron density (cm^-3), and n_H is the hydrogen density (cm^-3)

XSpec version

This information is taken from the XSpec User's Guide. Version 12.8.0k of the XSpec models is supplied with CIAO 4.6.

Bugs

For a list of known bugs and issues with the XSPEC models, please visit the XSPEC bugs page.

See Also

models
absorptionedge, absorptiongaussian, absorptionlorentz, absorptionvoigt, accretiondisk, atten, bbody, bbodyfreq, beta1d, beta2d, blackbody, box1d, box2d, bpl1d, bremsstrahlung, brokenpowerlaw, ccm, const1d, const2d, cos, delta1d, delta2d, dered, devaucouleurs2d, disk2d, edge, emissiongaussian, emissionlorentz, emissionvoigt, erf, erfc, exp, exp10, fm, gauss1d, gauss2d, hubblereynolds, jdpileup, linebroad, list_model_components, list_models, lmc, log, log10, logabsorption, logemission, logparabola, lorentz1d, lorentz2d, models, normbeta1d, normgauss1d, normgauss2d, opticalgaussian, poisson, polynom1d, polynom2d, polynomial, powerlaw, powlaw1d, recombination, scale1d, scale2d, schechter, seaton, sersic2d, shell2d, sin, sm, smc, sqrt, stephi1d, steplo1d, tablemodel, tan, xgal, xs, xsabsori, xsacisabs, xsapec, xsbapec, xsbbody, xsbbodyrad, xsbexrav, xsbexriv, xsbkn2pow, xsbknpower, xsbmc, xsbremss, xsbvapec, xsbvvapec, xsc6mekl, xsc6pmekl, xsc6pvmkl, xsc6vmekl, xscabs, xscemekl, xscevmkl, xscflow, xscompbb, xscompls, xscompps, xscompst, xscompth, xscomptt, xsconstant, xscplinear, xscutoffpl, xscyclabs, xsdisk, xsdiskbb, xsdiskir, xsdiskline, xsdiskm, xsdisko, xsdiskpbb, xsdiskpn, xsdust, xsedge, xseplogpar, xseqpair, xseqtherm, xsequil, xsexpabs, xsexpdec, xsexpfac, xsezdiskbb, xsgabs, xsgadem, xsgaussian, xsgnei, xsgrad, xsgrbm, xshighecut, xshrefl, xskerrbb, xskerrd, xskerrdisk, xslaor, xslaor2, xslogpar, xslorentz, xsmeka, xsmekal, xsmkcflow, xsnei, xsnotch, xsnpshock, xsnsa, xsnsagrav, xsnsatmos, xsnsmax, xsnteea, xsnthcomp, xsoptxagn, xsoptxagnf, xspcfabs, xspegpwrlw, xspexmon, xspexrav, xspexriv, xsphabs, xsplabs, xsplcabs, xsposm, xspowerlaw, xspshock, xspwab, xsraymond, xsredden, xsredge, xsrefsch, xssedov, xssirf, xssmedge, xsspexpcut, xsspline, xssrcut, xssresc, xssss_ice, xsstep, xsswind1, xstbabs, xstbgrain, xstbvarabs, xsuvred, xsvapec, xsvarabs, xsvbremss, xsvequil, xsvgadem, xsvgnei, xsvmcflow, xsvmeka, xsvmekal, xsvnpshock, xsvphabs, xsvpshock, xsvraymond, xsvsedov, xsvvapec, xswabs, xswndabs, xsxion, xszbbody, xszbremss, xszdust, xszedge, xszgauss, xszhighect, xszigm, xszpcfabs, xszphabs, xszpowerlw, xszredden, xszsmdust, xsztbabs, xszvarabs, xszvfeabs, xszvphabs, xszwabs, xszwndabs, xszxipcf

Last modified: December 2013
Smithsonian Institute Smithsonian Institute

The Chandra X-Ray Center (CXC) is operated for NASA by the Smithsonian Astrophysical Observatory. 60 Garden Street, Cambridge, MA 02138 USA.   Email:   cxcweb@head.cfa.harvard.edu Smithsonian Institution, Copyright © 1998-2014. All rights reserved.