A Typical Sherpa Session

(The boiled-down version.)

The user:

- reads in data (and sets filters, etc.);
- builds model expressions;
- chooses a statistic;
- fits the model expressions to the data, one at a time;
- compares the results of the fits in order to select a best-fit model; and
- estimates the errors for the best-fit model parameters.

Choosing a Statistic

(So many choices, so little guidance.)

A key feature of Sherpa is its large array of statistics appropriate for analyzing Poisson-distributed (i.e. counts) data.

- Statistics based on χ^2 :
 - CHI GEHRELS
 - CHI DVAR
 - CHI MVAR
 - CHI PARENT
 - CHI PRIMINI
- \bullet Statistics based on the Poisson likelihood \mathcal{L} :
 - -CASH
 - BAYES

If the data are not Poisson-distributed (e.g. fluxes), then alternatives include:

- least-squares fitting: setting all variances to one; or
- providing errors in an input file.

χ^2 -Based Statistics

The χ^2 statistic is

$$\chi^2 \equiv \sum_i \frac{(D_i - M_i)^2}{\sigma_i^2},$$

where

- D_i represents the observed datum in bin i;
- M_i represents the predicted model counts in bin i; and
- σ_i^2 represents the variance of the sampling distribution for D_i .

$$\chi^2$$
 Statistic σ_i^2

GEHRELS
$$[1 + \sqrt{D_i + 0.75}]^2$$

$${ t DVAR}$$

$$exttt{MVAR} \qquad \qquad M_i$$

PARENT
$$\frac{\sum_{i=1}^{N} D_i}{N}$$

PRIMINI
$$M_i$$
 from previous best-fit

Likelihood-Based Statistics

The CASH statistic is

$$C \equiv 2\sum_{i} [M_i - D_i \log M_i] \propto -2 \log \mathcal{L},$$

where

- D_i represents the observed datum in bin i;
- M_i represents the predicted model counts in bin i; and
- $\mathcal{L} = \prod_i \frac{M_i^{D_i}}{D_i!} \exp(-M_i).$

Statistics: Caveats

(Potholes on the road to publication.)

Things to remember when using χ^2 :

- χ^2 is an approximation of $\log \mathcal{L}$ in the Gaussian (high-counts) limit. So...
- All estimations of variance (except GEHRELS) assume a Gaussian sampling distribution, not Poisson. Hence the number of counts in each bin should be ≥ 5 .
- CHI GEHRELS works with low-count data, but does not generally follow the χ^2 distribution: best fits are often "too good."
- And χ^2 is a biased estimator.

Things to remember when using CASH or BAYES:

- In the limit of high counts, $\Delta C \sim \Delta \chi^2$.
- Likelihood estimators are unbiased. But...
- Background subtraction is *not* allowed.
- There is no "goodness-of-fit" measure.
- And negative model amplitudes are *not* allowed.

A Demonstration of Bias

- Using the *Sherpa* utility **FAKEIT**, we simulated 500 datasets from a constant model with amplitude 100 counts.
- We then fit each dataset with a constant model, recording the inferred amplitude.

Statistic	Average Amplitude
CHI GEHRELS	99.05
CHI DVAR	99.02
CHI MVAR	100.47
CHI PARENT	99.94
CHI PRIMINI	99.94
CASH	99.98

Optimization in Sherpa

Optimization is the action of minimizing χ^2 or $-\log \mathcal{L}$ by varying the thawed parameters of the model. The user may choose between several optimization methods in Sherpa, including ones which:

- Find the local minimum.
 - POWELL
 - SIMPLEX
 - LEVENBERG-MARQUARDT

These algorithms are not computationally expensive, but they are also not appropriate for finding the global minimum of a complex statistical surface when starting from a random point.

- Attempt to find the global minimum.
 - GRID and GRID-POWELL
 - MONTE and MONTE-POWELL
 - SIMULATED ANNEALING

These are computationally intensive algorithms which are useful for searching complex statistical surfaces, starting from a random point.

Optimization: Powell

POWELL is *Sherpa*'s default optimizer.

- It is a direction-set method in which initially, the chosen statistic is minimized by varying each parameter in turn while holding all other parameter values fixed.
- Advantages:
 - no gradient calculation
 - robust
 - * can find local minima even on complex surfaces
 - * can be used with all statistics
- Disadvantage:
 - relatively slow

Optimization: Simplex

- The vertices of a simplex are reflected and/or contracted until the local minimum is bracketed.
- Advantages:
 - no gradient calculation
 - can find local minima even on complex surfaces
 - faster than POWELL
- Disadvantage:
 - exhibits a tendency to converge before reaching minima

Optimization: Levenberg-Marquardt

• Approach the minimum taking steps of size $\delta \vec{\theta}$, computed by solving the set of linear equations:

$$\sum_{j=1}^{n} \alpha_{i,j} (1 + \lambda_{i,j}) \delta \theta_j = \beta_i,$$

where

$$\alpha_{i,j} = \sum_{k=1}^{n} \frac{1}{\sigma_k^2} \left[\frac{\partial M(\vec{\theta})}{\partial \theta_i} \frac{\partial M(\vec{\theta})}{\partial \theta_j} \right] ,$$

$$\beta_i = -\frac{1}{2} \frac{\partial \chi^2}{\partial \theta_i} ,$$

and $\lambda_{i,j}$ is a numerical factor, non-zero when i = j.

- Advantage:
 - fast
- Disadvantages:
 - requires gradient calculation
 - less robust in complex parameter spaces
 - appropriate for use with χ^2 statistics only
- Enhancements made in CIAO 2.1:
 - works correctly during simultaneous fits of source and background data
 - works correctly with double-precision data

Confidence Intervals and Regions

(What are the errors on my parameters?)

- In frequentist statistics, the data are the random variables. Thus to estimate confidence intervals, new datasets need to be repeatedly simulated, either from the best-fit model or from the data themselves.
- A distribution of parameter values is generated by fitting the model to each simulated dataset.
- The central 68% of the parameter values can be called the 1σ confidence interval.
- Simulations are computationally expensive. If:
 - the χ^2 or $\log \mathcal{L}$ surface in parameter space is approximately shaped like a multi-dimensional paraboloid, and
 - the best-fit point is sufficiently far from parameter space boundaries,

then we may achieve good estimates of confidence intervals by examining the χ^2 or $\log \mathcal{L}$ surface itself.

Confidence Intervals and Regions: Uncertainty

- Vary a parameter's value, while holding the values of all other parameters to their best-fit values, until the fit statistic increases by some preset amount from its minimum value (e.g. $\Delta \chi^2 = 1$ for 1σ).
- Gives correct results if and only if:
 - the statistic surface is "well-behaved"
 - there are no correlations between parameters
- Advantage:
 - fast
- Disadvantage:
 - errors are generally underestimated
- The user can visualize fit statistics as a function of parameter value using INTERVAL-UNCERTAINTY.
- The user can visualize two-dimensional confidence regions using REGION-UNCERTAINTY.

Confidence Intervals and Regions: Projection

- Vary a parameter's value, while allowing the values of all other parameters to float to new best-fit values, until the fit statistic increases by some preset amount from its minimum value (e.g. $\Delta \chi^2 = 1$ for 1σ).
- Gives correct results if and only if:
 - the statistic surface is "well-behaved"
- Advantages:
 - more accurate than UNCERTAINTY
 - provides a relatively inexpensize means of surface visualization
- Disadvantages:
 - no more accurate than the faster COVARIANCE
- The user can visualize fit statistics as a function of parameter value using INTERVAL-PROJECTION.
- The user can visualize two-dimensional confidence regions using REGION-PROJECTION.

Confidence Intervals and Regions: Covariance

• 1σ confidence intervals are given by $\sqrt{C_{i,i}}$, where

$$C_{i,j} = I_{i,j}^{-1},$$

and I, the information matrix computed at the best-fit point, is

$$I_{i,j} \equiv \frac{1}{2} \frac{\partial^2 \chi^2}{\partial p_i \partial p_j} \text{ or } \frac{1}{2} \frac{\partial^2 C}{\partial p_i \partial p_j} \text{ or } \frac{\partial^2 B}{\partial p_i \partial p_j}.$$

- Gives correct results if and only if:
 - the statistic surface is "well-behaved"
- Advantage:
 - fast
- Disadvantages:
 - the only computations are near the best-fit point, so not useful for surface visualization
 - involves matrix inversion, which can fail

Example with a Well-Behaved Parameter Space

sherpa> fit powll: v1.2

powll: initial function value = 8.22297E+01

powll: converged to minimum = 6.27050E+01 at iteration = 7

powll: final function value = 6.27050E+01

p.c0 56.2579 p.c1 0.11117 p.c2 -0.00119999

sherpa> uncertainty

Computed for uncertainty.sigma = 1

Parameter Name	Best-Fit	Lower Bound	Upper Bound
p.c0	56.2579	-0.865564	+0.864461
p.c1	0.11117	-0.0148228	+0.0148038
p.c2	-0.00119999	-0.000189496	+0.000189222

sherpa> projection

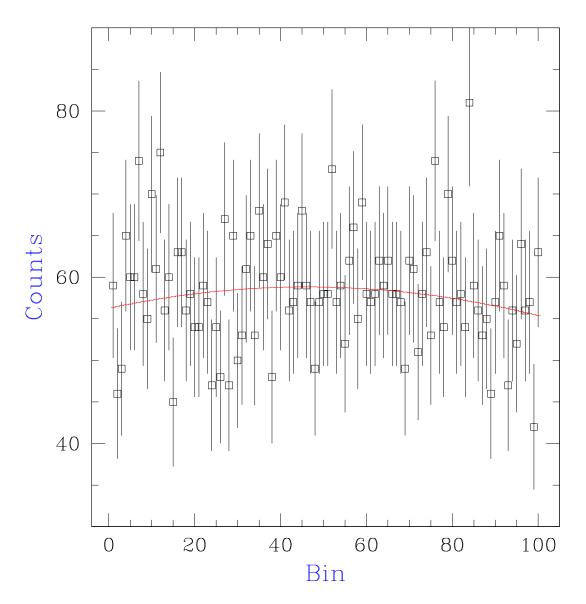
Computed for projection.sigma = 1

Parameter Name	Best-Fit L	ower Bound	Upper Bound
p.c0	56.2579	-0.120684	+2.64497
p.c1	0.11117		+0.120703
p.c2	-0.00119999		+0.00114976

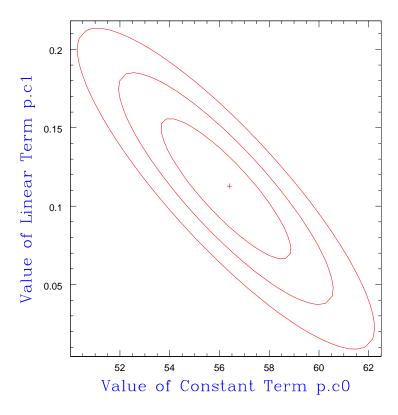
sherpa> covariance

Computed for covariance.sigma = 1

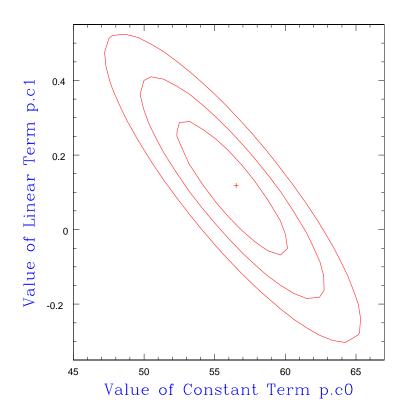
Parameter Name	Best-Fit	Best-Fit Lower Bound	
p.c0	56.2579	-2.64786	+2.64786
p.c1	0.11117	-0.121023	+0.121023
p.c2	-0.00119999	-0.00115675	+0.00115675



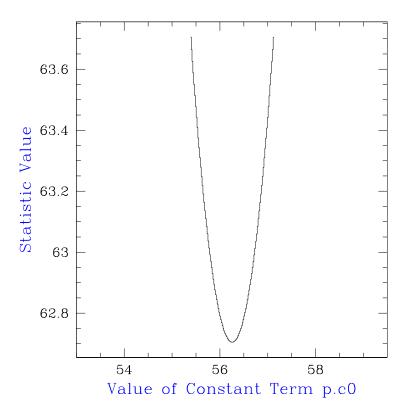
Confidence Region - Uncertainty



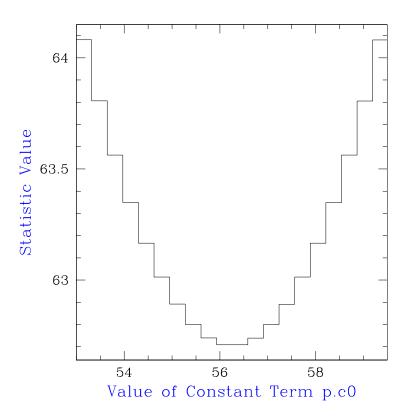
Confidence Region - Projection



Interval - Uncertainty



Interval - Projection



Credible Intervals and Regions

(Bayesian methodology in the tiniest of nutshells.)

• In Bayesian methodology, credible intervals and regions are computed directly from the χ^2 or $\log \mathcal{L}$ surface, using Bayes' theorem:

$$p(\vec{\theta}|D) \; = \; p(\vec{\theta}) \frac{p(D|\vec{\theta})}{p(D)} \, , \label{eq:posterior}$$

where

- $-p(D|\vec{\theta})$ is the likelihood of the data D given $\vec{\theta}$, the vector of model parameter values
 - (i.e. $\log \mathcal{L}$ or $\exp(-\chi^2/2)$)
- $-p(\vec{\theta})$ is the prior for $\vec{\theta}$
- $-p(\vec{\theta}|D)$ is the posterior for $\vec{\theta}$
- -p(D) is an ignorable normalization constant
- The ability to specify priors is not yet included in *Sherpa*.

Credible Intervals and Regions

• To estimate credible intervals, one marginalizes over nuisance parameters, e.g.:

$$p(\theta_1|D) = \int_{\theta_2} d\theta_2 \cdot \cdot \cdot \int_{\theta_n} d\theta_n \ p(\vec{\theta}|D).$$

- The central 68% of the distribution $p(\theta_1|D)$ is the 1σ credible interval.
- The computation of credible intervals and regions can be computationally intensive if there are many free parameters.
- However, approximate techniques such as adaptive integration are coded in freely available software, such as **BAYESPACK** (by Genz).

Likelihood-Based Statistics

The **BAYES** statistic is the posterior distribution for the source model parameters $\vec{\theta}_S$, with the background amplitudes in each (energy) bin $\theta_{B,i}$ marginalized out:

$$B \equiv -p(\vec{\theta}_S|D) = -\sum_i \int_{\theta_{B,i}} d\theta_{B,i} p(\vec{\theta}_S, \theta_{B,i}|D)$$

If $\theta_{B,i}$ is *constant* as a function of spatial location and/or time, then an analytic expression (not reproduced here) replaces the summation of integrals.

NOTE: $\theta_{B,i}$ are *implicit* parameters, not user-defined!

How is this statistic different from CASH?

- 1. CASH makes no assumptions about the behavior of the background as a function of spatial location and/or time.
- 2. CASH performs no implicit marginalization.

New Methods of Parameter Estimation

(Or, what might go into CIAO 4.0...)

Markov Chain Monte Carlo (MCMC) is a well-developed method that works as both an optimizer and a parameter estimator.

- A Markov Chain is an ordered sequence of random variables Θ ; the probability of sampling variable Θ_i depends only upon Θ_{i-1} .
- The Monte Carlo aspect is how possible Θ_i are chosen: randomly.

To use MCMC, a *Sherpa* user would:

- specify a rule for how possible Θ_i are chosen (e.g. select new random values for a subset of the thawed parameters);
- specify a rule for whether Θ_i is used, or disregarded (e.g. the Metropolis algorithm: given a randomly selected number r, $0 \le r \le 1$, keep Θ_i if

$$r < \min \left[1, \frac{\mathcal{L}(\Theta_i)}{\mathcal{L}(\Theta_{i-1})}\right];$$

• and specify a stopping rule.

The central 68% of the selected parameter values define the 1σ credible/confidence interval.

Model Comparison Tests

(Which of my models is the best one?)

These do not yet exist in *Sherpa*. They compare directly compare two models, M_0 and M_1 , to yield either:

- The frequentist test significance, α , that represents the probability of selecting the alternative (more complex) model M_1 when in fact the null hypothesis M_0 is correct; or
- The Bayesian odds, which is the ratio of model posterior probabilities for M_1 and M_0 :

$$O_{10} = \frac{p(M_1|D)}{p(M_0|D)}$$

In simple situations, the model posterior probability is determined by determining the integral of L over all parameter space.

Model Comparison Tests

Standard model comparison tests include:

• The Maximum Likelihood Ratio (MLR) test:

$$\alpha_{\chi^2 \mathrm{MLR}} = \int_{\Delta \chi^2}^{\infty} d\chi^2 p(\Delta \chi^2 | \Delta N_{\theta}) ,$$

where ΔN_{θ} is the number of additional thawed model parameters in model M_1 .

• The F-test:

$$\alpha_F = \int_F^{\infty} dF \ p(F|\Delta N_{\theta}, n - N_{\theta,1})$$

$$= I_{\frac{n-N_{\theta,1}}{n-N_{\theta,1} + (\Delta N_{\theta})F}} \left(\frac{n - N_{\theta,1}}{2}, \frac{\Delta N_{\theta}}{2}\right) ,$$

where n is the number of bins in the fit and $N_{\theta,1}$ is the total number of thawed parameters in model M_1 , I is the incomplete beta function, and F is the F-statistic

$$F = \frac{\Delta \chi^2}{\Delta N_{\theta}} / \frac{\chi_1^2}{(n - N_{\theta,1})}.$$

• Computation of the Bayesian odds using the Laplace approximation, valid for "well-behaved" surfaces. This approximation yields an analytic formula (not reproduced here) that allows the odds to be computed from $\Delta \log \mathcal{L}$, ΔN_{θ} , the covariance matrices associated with both models, and the value of the priors at the best-fit points.

Other Future Enhancements to Sherpa

- In convolution and optimization:
 - Treating pile-up.
 - Adding a convolution operator.
 - Adding the ability to use responses directly input from Fits Embedded Function (FEF) files when fitting models.
- In two-dimensional image analysis:
 - Being able to simultaneously fit source and background regions without inputting the background as a separate dataset.
 - Adding the ability to use exposure maps.
 - Extending flux calculations to two dimensions.
- In higher-dimensional data analysis:
 - Improving multi-axis fitting with functionals.
 - Adding visualization of data projected to one or two dimensions.

• And:

- Enhancing the capabilities of **GUIDE** to make it easier both to fit a sequence of individual lines and to perform differential emission measure fits.