A Typical Sherpa Session

(The boiled-down version.)

The user:

e reads in data (and sets filters, etc.);

e builds model expressions;

e chooses a statistic;

e fits the model expressions to the data, one at a time;

e compares the results of the fits in order to select a best-fit model;
and

e estimates the errors for the best-fit model parameters.



Choosing a Statistic

(So many choices, so little guidance.)

A key feature of Sherpa is its large array of statistics appropriate for
analyzing Poisson-distributed (i.e. counts) data.

e Statistics based on x?:

— CHI GEHRELS
— CHI DVAR

— CHI MVAR

— CHI PARENT

— CHI PRIMINI

e Statistics based on the Poisson likelihood L:

— CASH
— BAYES

If the data are not Poisson-distributed (e.g. fluxes), then alternatives
include:

e least-squares fitting: setting all variances to one; or

e providing errors in an input file.



y’-Based Statistics

The 2 statistic is

where

e D), represents the observed datum in bin ¢;
e )M, represents the predicted model counts in bin ¢; and

e 07 represents the variance of the sampling distribution for D;.

x° Statistic o’

GEHRELS [1++/D;+0.75
DVAR D;

MVAR M;

PARENT Ei1 Di

PRIMINI M; from previous best-fit




Likelihood-Based Statistics

The CASH statistic is

C = 2Y[M;— D;log M;] < —2logL,

7

where
e D, represents the observed datum in bin ¢;

e ), represents the predicted model counts in bin ¢; and

M)
o L =11, 71 exp(—M,).




Statistics: Caveats

(Potholes on the road to publication.)

Things to remember when using x?:

e x? is an approximation of logL in the Gaussian (high-counts)
limit. So...

e All estimations of variance (except GEHRELS) assume a Gaussian
sampling distribution, not Poisson. Hence the number of counts
in each bin should be 3 5.

e CHI GEHRELS works with low-count data, but does not generally
follow the x? distribution: best fits are often “too good.”

e And x? is a biased estimator.
Things to remember when using CASH or BAYES:
e In the limit of high counts, AC ~ Ax?2.
e Likelihood estimators are unbiased. But...
e Background subtraction is not allowed.
e There is no “goodness-of-fit” measure.

e And negative model amplitudes are not allowed.



A Demonstration of Bias

e Using the Sherpa utility FAKEIT, we simulated 500 datasets from
a constant model with amplitude 100 counts.

e We then fit each dataset with a constant model, recording the
inferred amplitude.

Statistic Average Amplitude
CHI GEHRELS 99.05
CHI DVAR 99.02
CHI MVAR 100.47
CHI PARENT 99.94
CHI PRIMINI 99.94

CASH 99.98




Optimization in Sherpa

Optimization is the action of minimizing x? or —logl by varying
the thawed parameters of the model. The user may choose between
several optimization methods in Sherpa, including ones which:

e [Find the local minimum.

— POWELL
— SIMPLEX
— LEVENBERG-MARQUARDT
These algorithms are not computationally expensive, but they are

also not appropriate for finding the global minimum of a complex
statistical surface when starting from a random point.

e Attempt to find the global minimum.

— GRID and GRID-POWELL
— MONTE and MONTE-POWELL
— SIMULATED ANNEALING
These are computationally intensive algorithms which are useful

for searching complex statistical surfaces, starting from a random
point.



Optimization: Powell

POWELL is Sherpa’s default optimizer.

e [t is a direction-set method in which initially, the chosen statistic
is minimized by varying each parameter in turn while holding all
other parameter values fixed.

e Advantages:

— no gradient calculation
— robust

x can find local minima even on complex surfaces

x can be used with all statistics

e Disadvantage:

— relatively slow



Optimization: Simplex

e The vertices of a simplex are reflected and/or contracted until
the local minimum is bracketed.

e Advantages:

— no gradient calculation
— can find local minima even on complex surfaces
— faster than POWELL

e Disadvantage:

— exhibits a tendency to converge before reaching minima



Optimization: Levenberg-Marquardt

e Approach the minimum taking steps of size 55, computed by
solving the set of linear equations:

'21 Oéi,j(l + )\m‘)(sej = ﬁz ,
]:

where
a1 [oM(@B)oM(6)
“i =570, o6, |
10x?

and A; ; is a numerical factor, non-zero when ¢ = j.

e Advantage:
— fast

e Disadvantages:

— requires gradient calculation
— less robust in complex parameter spaces

— appropriate for use with y? statistics only

e Fnhancements made in CIAO 2.1:

— works correctly during simultaneous fits of source and back-
ground data

— works correctly with double-precision data



Confidence Intervals and Regions

(What are the errors on my parameters?)

e In frequentist statistics, the data are the random variables. Thus
to estimate confidence intervals, new datasets need to be repeat-
edly simulated, either from the best-fit model or from the data
themselves.

e A distribution of parameter values is generated by fitting the
model to each simulated dataset.

e The central 68% of the parameter values can be called the 1o
confidence interval.

e Simulations are computationally expensive. If:

— the x? or logL surface in parameter space is
approximately shaped like a multi-dimensional
paraboloid, and

— the best-fit point is sufficiently far from parameter space

boundaries,

then we may achieve good estimates of confidence intervals by
examining the x? or logL surface itself.



Confidence Intervals and Regions:
Uncertainty

e Vary a parameter’s value, while holding the values of all other
parameters to their best-fit values, until the fit statistic increases
by some preset amount from its minimum value (e.g. Ax* = 1
for 10).

e Gives correct results if and only if:

— the statistic surface is “well-behaved”

— there are no correlations between parameters
e Advantage:
— fast

e Disadvantage:

— errors are generally underestimated

e The user can visualize fit statistics as a function of parameter
value using INTERVAL-UNCERTAINTY.

e The user can visualize two-dimensional confidence regions using
REGION-UNCERTAINTY.



Confidence Intervals and Regions:
Projection

e Vary a parameter’s value, while allowing the values of all other
parameters to float to new best-fit values, until the fit statistic
increases by some preset amount from its minimum value (e.g.

Ax? =1 for 10).
e Gives correct results if and only if:

— the statistic surface is “well-behaved”

e Advantages:

— more accurate than UNCERTAINTY

— provides a relatively inexpensize means of surface visualization

e Disadvantages:

— no more accurate than the faster COVARIANCE

e The user can visualize fit statistics as a function of parameter
value using INTERVAL-PROJECTION.

e The user can visualize two-dimensional confidence regions using
REGION-PROJECTION.



Confidence Intervals and Regions:
Covariance

e 1o confidence intervals are given by /C};, where

Ci; = I},
and I, the information matrix computed at the best-fit point, is
1 0%y? 1 0*C 0’B
L = - or — or

20p;0p; ~ 20pidp; ~ Opidp;
e Gives correct results if and only if:

— the statistic surface is “well-behaved”

e Advantage:
— fast

e Disadvantages:

— the only computations are near the best-fit point, so not useful
for surface visualization

— involves matrix inversion, which can fail



Example with a Well-Behaved
Parameter Space

sherpa> fit

powll: v1.2
powll: initial function value = 8.22297E+01
powll: converged to minimum = 6.27050E+01 at iteration = 7
powll: final function value = 6.27050E+01
p.-cO 56.2579
p.cl 0.11117
p-c2 -0.00119999
sherpa> uncertainty
Computed for uncertainty.sigma = 1
Parameter Name Best-Fit Lower Bound Upper Bound
p.cO 56.2579 -0.865564 +0.864461
p.cl 0.11117 -0.0148228 +0.0148038
p.c2 -0.00119999 -0.000189496 +0.000189222
sherpa> projection
Computed for projection.sigma = 1
Parameter Name Best-Fit Lower Bound Upper Bound
p-cO 56.2579 -2.64465 +2.64497
p-cil 0.11117 -0.120684 +0.120703
p-c2 -0.00119999 -0.00115029 +0.00114976
sherpa> covariance
Computed for covariance.sigma = 1
Parameter Name Best-Fit Lower Bound Upper Bound
p.cO 56.2579 -2.64786 +2.64786
p.cl 0.11117 -0.121023 +0.121023

p-c2 -0.00119999 -0.00115675 +0.00115675
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Confidence Region — Uncertainty
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Credible Intervals and Regions

(Bayesian methodology in the tiniest of nutshells.)

e In Bayesian methodology, credible intervals and regions are com-
puted directly from the x2 or log£ surface, using Bayes’ theorem:

—

;i p(DIf)
p(0|D) = p(0)——",
@0) = pH
where
— p(D|6) is the likelihood of the data D given 8, the vector of

model parameter values

(1.e. logL or exp(—x?/2))
— p(g) is the prior for §
— p(§| D) is the posterior for ]

— p(D) is an ignorable normalization constant

e The ability to specify priors is not yet included in Sherpa.



Credible Intervals and Regions

e To estimate credible intervals, one marginalizes over nuisance
parameters, e.g.:

p(6:[D) = [, dbs--- [, db, p(6]D).

e The central 68% of the distribution p(6;|D) is the 1o credible
interval.

e The computation of credible intervals and regions can be compu-
tationally intensive if there are many free parameters.

e However, approximate techniques such as adaptive integration
are coded in freely available software, such as BAYESPACK (by
Genz).



Likelihood-Based Statistics

The BAYES statistic is the posterior distribution for the source model
parameters fg, with the background amplitudes in each (energy) bin
p,; marginalized out:

B = — p(§5|D) = — Z/ﬂm d9B,iP(§S,HB,7;|D)

If Op; is constant as a function of spatial location and/or time, then
an analytic expression (not reproduced here) replaces the summation
of integrals.

NOTE: 0p; are implicit parameters, not user-defined!

How 1is this statistic different from CASH?

1. CASH makes no assumptions about the behavior of the back-
ground as a function of spatial location and/or time.

2. CASH performs no implicit marginalization.



New Methods of Parameter Estimation
(Or, what might go into CIAO 4.0...)

Markov Chain Monte Carlo (MCMC) is a well-developed method
that works as both an optimizer and a parameter estimator.

e A Markov Chain is an ordered sequence of random variables ©;
the probability of sampling variable ©; depends only upon ©,_;.

e The Monte Carlo aspect is how possible ©; are chosen: randomly.

To use MCMC, a Sherpa user would:

e specify a rule for how possible ©; are chosen (e.g. select new
random values for a subset of the thawed parameters);

e specify a rule for whether ©; is used, or disregarded (e.g. the
Metropolis algorithm: given a randomly selected number r, 0 <
r <1, keep ©; if

r < min

1,

L£(©;) |,
Lt(@“)] )

e and specify a stopping rule.

The central 68% of the selected parameter values define the 1o cred-
ible/confidence interval.



Model Comparison Tests
(Which of my models is the best one?)

These do not yet exist in Sherpa. They compare directly compare
two models, My and M, to yield either:

e The frequentist test significance, «, that represents the probabil-
ity of selecting the alternative (more complex) model M; when
in fact the null hypothesis M is correct; or

e The Bayesian odds, which is the ratio of model posterior proba-

bilities for M; and Mj:
o _ PM|D)
10 =
p(My|D)

In simple situations, the model posterior probability is deter-
mined by determining the integral of L over all parameter space.



Model Comparison Tests

Standard model comparison tests include:

e The Maximum Likelihood Ratio (MLR) test:
Q2R = /Aozz dx*p(AX*|ANy),

where A Ny is the number of additional thawed model parameters
in model Mj.

o The F-test:
ap / dF p(F|ANg,n — Ny1)
n — Ng}l ANQ
— [ n— N01 ( 2 3 2 ) 3
n— Ne 1+(AN0)

where n is the number of bins in the fit and Ny is the total
number of thawed parameters in model M, I is the incomplete
beta function, and F'is the F'-statistic
Ax* X

F = :
AN@ (n — Ng’l)

e Computation of the Bayesian odds using the Laplace approxi-
mation, valid for “well-behaved” surfaces. This approximation
yields an analytic formula (not reproduced here) that allows the
odds to be computed from AlogL, ANy, the covariance matrices
associated with both models, and the value of the priors at the
best-fit points.



Other Future Enhancements to Sherpa

e In convolution and optimization:
— Treating pile-up.
— Adding a convolution operator.
— Adding the ability to use responses directly input from Fits
Embedded Function (FEF) files when fitting models.
e In two-dimensional image analysis:
— Being able to simultaneously fit source and background re-
gions without inputting the background as a separate dataset.
— Adding the ability to use exposure maps.

— Extending flux calculations to two dimensions.
e In higher-dimensional data analysis:

— Improving multi-axis fitting with functionals.
— Adding visualization of data projected to one or two dimen-

sions.

e And:

— Enhancing the capabilities of GUIDE to make it easier both to
fit a sequence of individual lines and to perform differential
emission measure fits.



