Status and Initial Results of the DROXO (Deep Rho Ophiuchi XMM-Newton Observation) Project:

or using X-rays as a probe of YSO physics

Salvatore Sciortino¹, Ignazio Pillitteri¹,²

1) INAF – Oss. Astronomico di Palermo Giuseppe S. Vaiana
2) Dip. di Scienze Fisiche ed Astronomiche, Univ. di Palermo

and the DROXO Collaboration
Some Standing Questions

• Can we distinguish between “pure” solar-like coronal and star-disk interaction activity?
• What is the interplay between accretion and X-ray emission in YSOs?
• How is the accretion channelled and regulated? There is any feedback at work?
• “More Recently”: What is the effects of X-rays on small (planetary) and large (mol. cloud) scale evolution?
• What do X-rays on the chemistry of proto-planetary disks?

To answer we need top quality spectro variability data
Issues recently investigated

• X-ray fluorescence from YSOs disks
• Flares and sizes of magnetic structures in YSOs
• X-ray Emission from Class 0 YSOs
• Shock-driven X-ray emission in YSOs

• DROXO should allow us to improve our knowledge thanks to high quality X-ray spectra and light-curve
Why we are so confident

YLW16a -- Chandra Spectrum (Imanishi et al., 2001)

Elias 29 – XMM-Newton Spectrum (Favata et al. 2004)
A Shallow (34 ksec) XMM-Newton observation of \(\rho \) Oph core F

- 87 X-ray sources
- Min PN \(\sim 2 \times 10^{-3} \) cnt/sec
- Min fx \(\sim 3 \times 10^{-14} \) erg/s/cm\(^2\)
- 25 previously unknown
- 43 detected by XMM and Chandra
 - 7 class I, 26 Class II,
 - 17 Class III +
 - 15 new Class III candid.
- 2 BDs detected: GY 310 & GY 141
- 17 pn Spectra \(>1000 \),
 - 28 \(>500 \) cnts

NEED HUNTING FOR MORE PHOTONS

Ozawa, Grosso & Montmerle 2004
The DROXO team as today

- S. Sciortino (PI), G. Micela, E. Flaccomio, B. Stelzer, F. Damiani, I. Pillitteri @ INAF-Oss. Astronomico di Palermo
- F. Favata, G. Giardino @ ESA-ESTEC, RSSD
- T. Montmerle, N. Grosso @ Observatoire de Grenoble
- L. Testi, F. Palla @ INAF – Oss. Astrofisico di Arcetri
Project Status

- Proposal submitted in reply to XMM-Newton AO4 as a Large XMM/Joint ESO Program
 - Constrains: To observe continuously for 4 subsequent XMM revolutions (~8 days) with a fixed roll angle
- Approved in October 2004 with observation planned to be started in the second half of 2005
- XMM Team decided to start observing on March 8 2005 before the official AO4 opening
- Actual Observation spans 5 revolutions (~10 days) due to a TOO, pending since AO1.
Project Status - continue

- Observation started in March 8 at revolution 961, but ...
 - after few hours observing
 - a micrometeorite struck onto one of the three XMM-Newton mirrors and
 - one of the external MOS1 CCD died
- The overall observation suffered bad “space weather”, and (...taking an optimistic attitude) ...
- ~ 50% of the observing time is “good” with quite low background
Project Status - continue

- Granted also ESO VLT observing time in service mode (but non contemporary at XMM observation)
 - 16 hours ISAAC (1 – 2.5 micron spectroscopy)
 - 5 hours GIRAFFE/FLAMES in the 6470-6790 Ang band (i.e. Hα and LiI lines)
- VLT Observations performed and data just delivered
- High Res. (RGS) data available for WTT SR12ab
- OM 3ksec snapshots in the UVW1 (2500-3500 Ang), ~15 UV sources found x snapshot

- In the following just a quick look to EPIC data
High Background - EPIC/MOS 1

Entire 500 ksec

Optimally Screened ~ 250 ksec

DROXO Team
Unpublished Material

DROXO Team
Unpublished Material
The Bad “Space Weather”

Bottom RED line signs the image rate rejection level for optimal weak source detection.

The rejection level for spectra can be more relaxed and need a fine “tuning”.
Some additional problems

- Pointing claims to be the same across the 5 observations, but in reality a "small" increasing drift is present
 - Very annoying -->

- Collected Counts and computed Exposure Map do not match
- Data need to be properly registered and shifted
Pointing Toward ρ Oph core F

Red : H (2Mass)
Green: K (2Mass)
Blue : J (2Mass)

Almost same pointing of previous shallow XMM observation
A look to the best data – Mos 1

DROXO Team
Unpublished Material

Red : 0.25 – 1.8 keV
Green: 1.8 – 3.7 keV
Blue : 3.7 – 7.5 keV

Almost same pointing of previous shallow XMM observation
A look to the best data

MOS1 + MOS2 + PN

Red : 0.25 – 1.8 keV
Green: 1.8 – 3.7 keV
Blue : 3.7 – 7.5 keV

- 133 Sources found in the combined data

DROXO Team
Unpublished Material
2Mass K – EPIC comparison
A few interesting sources

RED LINES == Background subtracted

XMM 2Mass

MOS 2 - SR12A-B

MOS2 - YLW16a

DROXO Team
A few interesting sources .. continue

XMM 2Mass
MOS 2 - EL 29

XMM 2Mass
MOS 2 - GY310
Bona fide BD

DROXO Team
A few interesting spectra ...

Elias 29

MOS1

$\sigma \sim 100 \text{ eV, } Z/Z_{\odot} \sim 0.75$

6.4 keV required
A few interesting spectra ...

YLW16a

1 T absorbed APEC model \Rightarrow

$N_H \left(10^{22}\right) = 6.6 \pm 0.25$

$kT \text{ (keV)} = 4.1 \pm 0.3$

Abundance $= 0.21 \pm 0.03$

No Fe 6.4 keV Line \Rightarrow

Line does change with time

PN screened
A few interesting spectra ...

GRY310, a brown dwarf

nH \((10^{22})\) \(0.72\) +/- \(0.11\)

kT (keV) \(2.54\) +/- \(0.66\)

Abundance \(2.0E-05\) +/- \(0.32\)
What next ... still a lot of analysis

• **DROXO** is providing new data for making accessible new, unique diagnostics of YSOs physics
 - Disk heating, chemistry, orientation
 - Fluorescence
 - Size and location of magnetic structures funnelling accreting plasma
 - Flare analysis
• X-ray spectra from very young BDs
• and much more that is still hidden into the data
THE END … for the moment