Field and cluster stars of similar age compared to test role of environment

These stars likely form in much lower density environments than cluster analogs

Moderate density regions:

Observations determine whether rotation reflects differences in star-forming environment

Goals

- High density regions:
 - In Turbulent Stellar Higher

- Low density regions:
 - Low turbulent Stellar lower

The collapse of \(M_{\odot} \) is expected to be faster in higher mass (dM) fragments.

Rotation: Rapid Rotation

There is no evidence of a significant 'break' in the rotational properties of stars, with older associations showing a slower rotation.

The fraction of stars with higher mean rotation speeds for stars born in high density clusters can be explained with a simple model of accretion + disk-locking.

Stars are deposited on the mass vs M (upper envelope) relationship for stars born in high density clusters, as shown by Konigl and Mathieu (1993). The time-averaged mass for stars born in high density clusters is expected to be higher than for stars born in low density clusters.

Fraction of Stars

<table>
<thead>
<tr>
<th>Fraction</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Older Assns</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Young Assns</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Field Stars</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Magnetostellar friction
- B = 2.5 kG
- Stars are an example of models.