A Decade in the Life of the Massive Black-Hole Binary IC10 X-1 Silas Laycock ${ }^{1}$
Rigel Cappallo ${ }^{1}$, Andrea Prestwich², Benjamin F. Williams ${ }^{3}$, Ascension Camero 4, Tom Maccarone ${ }^{5}$

Abstract

Chandra thanks to its angular resolution, sensitivity and endurance has been able to monitor individual X-ray binaries in the starburst galaxy IC 10. The Wolf Rayet + BH binary known as IC10 X-1 is regarded as one of the most massive stellar black holes; a class of bjects representing the pinnacle of the stellar mass function. BH binaries occupy key roles in seeding SMBHs, producing long GRBs at birth, and gravitational waves at death. We report our use of Chandra to refine the orbital ephemeris of X1 and match-up the radial velocity curve of the optical spectral lines with the X-ray eclipse. The resulting phase offset has fascinating implications for our understanding of the interactions between the WR star, its wind and the radiation field of the compact object. Among other things it pears that he need for massive BH in Ahe syster is ars to instead trace a slim sector of stellar wind that escapes

Long-Term Lightcurve from Chandra

 and XMM-Newton

Chandra Broad-band ($0.3-8 \mathrm{keV}$, black), Soft-band ($0.3-1.5 \mathrm{keV}$) and Hard-band ($2.5-8 \mathrm{keV}$). XMM points (open circles) have een scaled using PIMMS to match ACIS. The grey points are he count rates binned at 1000 s within each observation. The

Lightcurves and Hardness Ratios
within each Observation

Time (seconds since ${ }^{371998.0}$)

Phase-Connecting the X-ray Lightcurve

We folded the 12 X -ray light-curve segments on a series of trial periods $\begin{gathered}\text { Orbital Phase }\end{gathered}$ spanning the 3σ uncertainty region for the orbital period reported by Silverman \& Fillipenko (2008)
At each trial period we computed the mean count-rate in the phase range $0.4-0.6$, which is mid-eclipse Chandra and XMM-Newton data were analyzed separately, yielding two sets of flux-minima, most of which are mutually exclusive
The resulting best period, also found by the Lomb-Scargle periodogram, is 125431s (1.45175(1) d) Visual inspection confirms no other trial-period can simultaneously place all low-flux points inside eclipse and all high-flux points outside eclipse.

During egress the hardness ratio climbs, indicating that a harder emitter is coming into view. This feature leads the rise in broad-band flux.

If we were simply seeing a point source with windabsorption, the HR would go the other way

Suggests an extended hard corona.

The Eclipse Profile

Duration of eclipse-minimum is ~ 5 hours, with roughly 1 hr ingress/egress stages

The Eclipse feature is much (5 x) wider than can be explained by a straightforward eclipse of the companion star.

The dense core of the WR star's stellar wind appears to be the extended eclipsing body.
The average profile shown at left seems to show asymmetry: Egress is more gradual than ingress More flaring is seen before eclipse

References:
Laycock, S., Cappallo, R., Moro, M., 2014, MNRAS, arXiv: 1410, 3417
Silverman \& Fillipenko, 2007, ApJ, 678, L17, Prestwich et al., 2007, ApJ, 669 L21, van Kerkwijk, M., H., 1993, A\&A, 276, 9, Barnard, R. et al., 2014, ApJ, 792, 131

Discovery of a Phase Offset between the Radial Velocity Curve and the X-ray Eclipse

The optical RV points folded modulo our X-ray ephemeris show an offset of $1 / 4$ orbital cycle $\left(90^{\circ}\right)$ relative to the eclipse
At mid-eclipse the He II line has its greatest doppler velocity shift towards us. The orbital motion of WR star should trace the red line
RV is likely a projection of the stellar wind, not the orbital motion of the binary

A New Model for the IC 10 X-1 Binary System

The wind is fully photo-ionized by X-rays from the compact object

- Optical spectral lines can only arise in the shielded sector of the wind - Free electron scattering will dominate the orbital profile. The wind core radius of $8 R_{\text {sun }}$ is inferred from the eclipse profile Binary separation is $18 R$ from the binary period and Kepler's Binary separation is $18 \mathrm{R}_{\text {sun }}$ from the binary period and Kepler's law.
Location of the Center of Mass depends upon the nature of the compact object, which is now unconstrained by any dynamical evidence. object, which is now unconstrained by any dynam
- For a $24 \mathrm{M}_{\text {sun }}$ black hole, the CM lies midway
- For a $1.4 \mathrm{M}_{\text {sun }}$ neutron star the CM lies inside the WR star's envelope

The table gives computed binary parameters for variants of the massive BH model and a lower mass BH or neutron star model.

$\begin{aligned} & M_{W R} \\ & M_{\odot} \end{aligned}$	$\begin{aligned} & M_{X} \\ & M_{\odot} \end{aligned}$	$\begin{aligned} & i \\ & \text { deg } \end{aligned}$	$\begin{aligned} & \begin{array}{l} a_{1}+a_{2} \\ R_{\odot} \end{array} \end{aligned}$	$\begin{aligned} & v_{W R} \\ & k m / s \end{aligned}$	$\begin{aligned} & v_{X} \\ & k m / s \end{aligned}$	$\begin{aligned} & T_{E} \\ & \mathrm{hr} \end{aligned}$	$\begin{aligned} & \mathrm{R}(\mathrm{~s}) \\ & R_{\odot} \end{aligned}$	$\begin{aligned} & R_{W R} \\ & R_{\odot} \end{aligned}$	$T_{W R}$
35	32	90	23.27	364.7	398.9	5	9.88	2	1.01
17	23	90	19.59	369.7	273.3	5	8.32	1.5	0.90
35	1.4	90	18.99	23.96	599.10	5	8.06	2	1.24
35	2.5	90	19.18	41.95	587.32	5	8.14	2	1.23
17	1.4	90	15.13	37.76	458.57	5	6.42	1.5	1.17
17	2.5	90	15.42	64.88	441.15	5	6.55	1.5	1.15

